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Abstract
Let (M, g) be a compact Riemann surface with area 1.We investigate the Toda system

{
−�u1 = 2ρ1(h1eu1 − 1) − ρ2(h2eu2 − 1),

−�u2 = 2ρ2(h2eu2 − 1) − ρ1(h1eu1 − 1),
(0.1)

on (M, g) where ρ1, ρ2 ∈ (0, 4π ], and h1 and h2 are two C2 functions on M . When
some ρi equals 4π , Eq. (0.1) becomes critical with respect to the Moser-Trudinger
inequality for the Toda system, making the existence problem significantly more chal-
lenging. In their seminal article (Comm. Pure Appl.Math., 59 (2006), no. 4, 526–558),
Jost, Lin, and Wang established sufficient conditions for the existence of solutions to
Eq. (0.1) when ρ1 = 4π , ρ2 ∈ (0, 4π) or ρ1 = ρ2 = 4π , assuming that h1 and h2 are
both positive. In our previous paper we extended these results to allow h1 and h2 to
change signs in the case ρ1 = 4π , ρ2 ∈ (0, 4π). In this paper we further extend the
study to prove that Jost-Lin-Wang’s sufficient conditions remain valid even when h1
and h2 can change signs and ρ1 = ρ2 = 4π . Our proof relies on an improved version
of the Moser-Trudinger inequality for the Toda system, along with dedicated analyses
similar to Brezis-Merle type and the use of Pohozaev identities.

1 Introduction

Let (M, g) be a compact Riemann surface with area 1 , and let h(x) be a smooth
function on M . The celebrated Kazdan-Warner problem [20] seeks to understand
under what conditions on the prescribed function h the following sub-linear elliptic
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partial differential equation has a solution:

−�u = 8π(heu − 1). (1.1)

This problem is often referred to as the “Nirenberg problem" when M is the standard
sphere, and it has been extensively studied [3–8, 13, 20, 26, 27, 34], among others.
When M is a general Riemann surface, Eq. (1.1) arises in the context of the so-called
Chern-Simons Higgs theory [2, 14, 17, 32], among others. The coefficient 8π in Eq.
(1.1) is critical with respect to the Moser-Trudinger inequality (cf. [9, 11]):

log
∫
M
eudvg ≤ 1

16π

∫
M

|∇u|2dvg +
∫
M
udvg + C . (1.2)

Thus, the existence problem for Eq. (1.1) becomes intricate. Ding-Jost-Li-Wang [9]
addressed this problem using a variational approach by minimizing the functional

I (u) = 1

2

∫
M

|∇u|2dvg + 8π
∫
M
udvg (1.3)

on the set

X =
{
u ∈ H1(M) :

∫
M
heudvg = 1

}
. (1.4)

Assuming h is positive, they showed that if

� log h(p) + 8π − 2K (p) > 0, (1.5)

where K is the Gaussian curvature of M , and p is any maximum point of the sum
of 2 log h and the regular part of the Green function, then I attains its infimum in
X and Eq. (1.1) has a minimal solution. Yang and the second author [36] relaxed
the positivity condition on h to nonnegativity. Recently, the first author and Zhu [29]
and the second author [38] independently proved that the condition (1.5) remains
sufficient even for sign-changed prescribed functions. All these works are based on
the variational approach. These results were also obtained using the flow method [22,
24, 28, 33].

In this paper, we continue to investigate the Toda system (0.1), which can be viewed
as the Frenet frame of holomorphic curves in CP

2 (see [16]) from a geometric per-
spective, and also arises in physics in the study of the nonabelian Chern-Simons theory
in the self-dual case, where a scalar Higgs field is coupled to a gauge potential; see
[10, 31, 35]. Our focus is on the existence result, and we aim to explore the variational
approach developed in [9, 18, 19, 21]. Recall that (0.1) represents the critical point of
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the functional

Jρ1,ρ2(u1, u2) = 1

3

∫
M

(
|∇u1|2 + ∇u1∇u2 + |∇u2|2

)
dvg

+ ρ1

∫
M
u1dvg + ρ2

∫
M
u2dvg

on the set

H =
{
(u1, u2) ∈ H1(M) × H1(M) :

∫
M
h1e

u1dvg =
∫
M
h2e

u2dvg = 1

}
.

From the Moser-Trudinger inequality for the Toda system

inf
(u1,u2)∈H

Jρ1,ρ2 ≥ −C iff ρ1, ρ2 ∈ (0, 4π ], (1.6)

derived by Jost-Wang [18], it is known that Jρ1,ρ2 is coercive and attains its infimum
when ρ1, ρ2 ∈ (0, 4π). However, when either ρ1 or ρ2 equals 4π , the existence prob-
lem becomes more intricate. In this paper, we shall focus on minimal type solutions.
Consequently, we assume ρi ≤ 4π , i = 1, 2, throughout the discussion.

Let us review the existence result when one of ρ1 and ρ2 equals 4π , which was
obtained by Jost, Lin, and Wang when h1 and h2 are both positive.

Theorem 1.1 (Jost-Lin-Wang [19]) Let (M, g) be a compact Riemann surface with
Gaussian curvature K . Let h1, h2 ∈ C2(M) be two positive functions and ρ2 ∈
(0, 4π). Suppose that

� log h1(x) + (8π − ρ2) − 2K (x) > 0, ∀x ∈ M, (1.7)

then J4π,ρ2 has a minimizer (u1, u2) ∈ H which satisfies

{
−�u1 = 8π(h1eu1 − 1) − ρ2(h2eu2 − 1),

−�u2 = 2ρ2(h2eu2 − 1) − 4π(h1eu1 − 1).
(1.8)

When ρ1 = ρ2 = 4π and both h1 and h2 are positive, we have:

Theorem 1.2 (Li-Li [21], Jost-Lin-Wang [19]) Let (M, g) be a compact Riemann
surface with Gaussian curvature K . Let h1, h2 ∈ C2(M) be two positive functions.
Suppose that

min{� log h1(x),� log h2(x)} + 4π − 2K (x) > 0, ∀x ∈ M, (1.9)

then J4π,4π has a minimizer (u1, u2) ∈ H which satisfies

{
−�u1 = 8π(h1eu1 − 1) − 4π(h2eu2 − 1),

−�u2 = 8π(h2eu2 − 1) − 4π(h1eu1 − 1).
(1.10)
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We remark that Li-Li obtained Theorem 1.2 when h1 = h2 = 1 and Jost-Lin-Wang
obtained it for general positive h1 and h2.

Motivated mostly by works in [9, 29, 36, 38], we would like to relax the positivity
of h1 and h2 in conditions (1.7) and (1.9). In our former paper [30], we successfully
relaxed the positivity of h1 and h2 in (1.7) and proved the following theorem.

Theorem 1.3 (Sun-Zhu [30]) Let (M, g) be a compact Riemann surface with the
Gaussian curvature K . Let h1, h2 ∈ C2(M) which are positive somewhere and
ρ2 ∈ (0, 4π). Denote M+

1 = {x ∈ M : h1(x) > 0}. If

� log h1(x) + (8π − ρ2) − 2K (x) > 0, ∀x ∈ M+
1 ,

then J4π,ρ2 has a minimizer (u1, u2) ∈ H which satisfies (1.8).

In this paper, we shall show that the positivity of h1 and h2 in (1.9) in Theorem 1.2
can also be relaxed. Precisely,

Theorem 1.4 Let (M, g) be a compact Riemann surface with the Gaussian curvature
K . Let h1, h2 ∈ C2(M) which are positive somewhere. Denote M+

i = {x ∈ M :
hi (x) > 0} for i = 1, 2. If

� log hi (x) + 4π − 2K (x) > 0, ∀x ∈ M+
i , i = 1, 2, (1.11)

then J4π,4π has a minimizer (u1, u2) ∈ H which satisfies (1.10).

At the end of the introduction, we would like to outline the proof of Theorem 1.4.
For any ε ∈ (0, 4π), we assume that J4π−ε,4π−ε(uε

1, u
ε
2) = infH J4π−ε,4π−ε , then

(uε
1, u

ε
2) satisfies a Toda type system. If (uε

1, u
ε
2) converges to some (u1, u2) ∈ H as

ε → 0, then J4π,4π (u1, u2) = infH J4π,4π , and we are done. Otherwise, if (uε
1, u

ε
2)

does not converge in H, we say that (uε
1, u

ε
2) blows up. We show that there are three

characterizations of the definition of blow-up, one of which is that uε
1 + uε

2 → −∞
as ε → 0. Here, uε

i denotes the mean value of uε
i on M , for i = 1, 2. Based on this

characterization, we divide the proof into three cases:

• Case 1: uε
1 → −∞ and uε

2 ≥ −C as ε → 0.
• Case 2: uε

1 ≥ −C and uε
2 → −∞ as ε → 0.

• Case 3: uε
1 → −∞ and uε

2 → −∞ as ε → 0.

Case 1 is similar to the situation where ρ1 = 4π and ρ2 ∈ (0, 4π), which has been
proved by us in [30]. Case 2 follows from Case 1. Suppose we are in Case 3. Since h1
and h2 can change signs, we do not have directly the characterization of the blow-up
set (Proposition 2.4 in [19]). More effort is needed to understand the blow-up set,
which is one of the main contributions in this paper. Since the L1 norm of eu

ε
i is

bounded, eu
ε
i dvg converges to some nonnegative measure μi , and suppμi 	= ∅, for

i = 1, 2. By Fatou’s lemma, suppμi is a finite set, for i = 1, 2. With the help of the
improved Moser-Trudinger inequality for the Toda system, we know that at least one
suppμi is a single point set. By the Pohozaev identity, we derive that suppμ j ( j 	= i)
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is also a single point set, which is different from suppμi . Then we can show that
h1μ1 = δx1 and h2μ2 = δx2 with x1 	= x2. Based on this, we derive a dedicated lower
bound for J4π,4π . Finally, we use the test functions (φε

1, φ
ε
2) constructed in [21] to

show that under condition (1.11), J4π,4π (φε
1, φ

ε
2) are strictly less than the lower bound

derived before. This contradiction tells us that (uε
1, u

ε
2) does not blow up, which proves

Theorem 1.4.
There are some relatedworks which deal with sign-changing potential in the critical

case with respect to Moser-Trudinger type inequalities (cf. [25, 37]). We believe that
our techniques could be used to deal with other nonlinear existence problems with
sign-changing prescribed functions.

The outline of the rest of the paper is following: In Sect. 2, we do some analysis on
the minimizing sequence; In Sect. 3, we estimate the lower bound for J4π,4π in Case
3; Finally, we complete the proof of Theorem 1.4 in the last section. Throughout the
whole paper, the constant C is varying from line to line and even in the same line,
we do not distinguish sequence and its subsequences since we only care about the
existence result.

2 Analysis on theminimizing sequence

In this section, we conduct an analysis on the minimizing sequence.
Given inequality (1.6), it is known that for any ε ∈ (0, 4π), there exists a pair

(uε
1, u

ε
2) ∈ H such that

J4π−ε,4π−ε(u
ε
1, u

ε
2) = inf

H
J4π−ε,4π−ε.

Direct calculations reveal the following equations on M :

{
−�uε

1 = (8π − 2ε)(h1eu
ε
1 − 1) − (4π − ε)(h2eu

ε
2 − 1),

−�uε
2 = (8π − 2ε)(h2eu

ε
2 − 1) − (4π − ε)(h1eu

ε
1 − 1).

(2.1)

Let uε
i = ∫

M uε
i dvg and mε

i = maxM uε
i = uε

i (x
ε
i ) for some xε

i ∈ M . Assume
xε
i → pi as ε → 0. The following three lemmas can be derived similarly to those in
[30, section 2].

Lemma 2.1 There exist two positive constants C1 and C2 such that

C1 ≤
∫
M
eu

ε
i dvg ≤ C2, i = 1, 2.

Lemma 2.2 For any s ∈ (1, 2), ‖∇uε
i ‖Ls (M) ≤ C for i = 1, 2.

Lemma 2.3 The following statements are equivalent:

(i) mε
1 + mε

2 → +∞ as ε → 0,
(ii)

∫
M (|∇uε

1|2 + ∇uε
1∇uε

2 + |∇uε
2|2)dvg → +∞ as ε → 0,
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(iii) uε
1 + uε

2 → −∞ as ε → 0.

Definition 2.1 (Blow-Up) We say (uε
1, u

ε
2) blows up if any one of the conditions in

Lemma 2.3 holds.

If (uε
1, u

ε
2) does not blow up, then by Lemma 2.3, one can show that (uε

1, u
ε
2)

converges to some (u1, u2) in H which minimizes J4π,4π . The proof of Theorem 1.4
terminates in this case. Therefore, without loss of generality we may assume (uε

1, u
ε
2)

blows up in the rest of this paper.
By Lemma 2.3 (iii), we divide the proof into the following three cases:
Case 1 uε

1 → −∞, uε
2 ≥ −C as ε → 0;

Case 2 uε
1 ≥ −C , uε

2 → −∞ as ε → 0;
Case 3 uε

1 → −∞, uε
2 → −∞ as ε → 0.

Suppose we are in Case 1, by checking the proofs in [30] carefully, we find that
ρ2 < 4π is used to show uε

2 ≥ −C which happens to be the situation in Case 1. And
at any other places ρ2 < 4π can be replaced by ρ2 = 4π . By Theorem 1.3, if

� log h1(x) + 4π − 2K (x) > 0 for x ∈ M+
1 ,

where M+
1 = {x ∈ M : h1(x) > 0}, J4π,4π has a minimizer (u1, u2) ∈ H which

satisfies (1.10).
Suppose we are in Case 2, similar as Case 1, we know that, if

� log h2(x) + 4π − 2K (x) > 0 for x ∈ M+
2 ,

where M+
2 = {x ∈ M : h2(x) > 0}, then J4π,4π has a minimizer (u1, u2) ∈ Hwhich

satisfies (1.10).
Suppose we are in Case 3, by Lemma 2.2, there exist Gi , i = 1, 2 such that

uε
i −uε

i ⇀Gi weakly inW 1,s(M) for any 1 < s < 2 as ε → 0. Since (eu
ε
i ) is bounded

in L1(M) we may extract a subsequence (still denoted eu
ε
i ) such that eu

ε
i converges in

the sense of measures on M to some nonnegative bounded measure μi for i = 1, 2.
We set

γ1 = 8πh1μ1 − 4πh2μ2, γ2 = 8πh2μ2 − 4πh1μ1

and

Si = {x ∈ M : |γi ({x})| ≥ 4π}, i = 1, 2.

Let S = S1 ∪ S2. By Theorem 1 in [1], we have

Lemma 2.4 For any 
 ⊂⊂ M \ S, there holds

uε
i − uε

i is uniformly bounded in 
, i = 1, 2. (2.2)
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Proof ∀x ∈ M \ S, we have Bδ(x) ⊂⊂ M \ S for sufficiently small δ > 0. Consider
the equation

{
−�wε

1 = (8π − 2ε)h1eu
ε
1 − (4π − ε)h2eu

ε
2 := fε in Bδ(x),

wε
1 = 0 on ∂Bδ(x).

Since |γ1({x})| < 4π , we have ‖ fε‖L1(Bδ(x)) < 4π for sufficiently small ε > 0 and

δ > 0. Fix such a δ. Define wε
2 = uε

1 − uε
1 − wε

1, then −�wε
2 = −(4π − ε) in Bδ(x).

By Theorem 4.1 in [12] and Lemma 2.2, we have

sup
Bδ/2(x)

wε
2 ≤C

(‖wε
2‖L1(Bδ(x)) + C

)
≤C

(
‖uε

1 − uε
1‖L1(M) + ‖vε

1‖L1(Bδ(x)) + C
)

≤C
(‖∇uε

1‖Ls (M) + ‖wε
1‖L1(Bδ(x)) + C

)
≤C

(‖wε
1‖L1(Bδ(x)) + C

)
.

It follows from Theorem 1 in [1] that es1|wε
1 | is bounded in Bδ(x) for some s1 > 1,

which yields that

‖wε
1‖L1(Bδ(x)) ≤ C .

So we have

sup
Bδ/2(x)

wε
2 ≤ C .

Then ∫
Bδ/2(x)

es1u
ε
1dvg =

∫
Bδ/2(x)

es1u
ε
1es1w

ε
2es1w

ε
1dvg

≤C
∫
Bδ/2(x)

es1|wε
1 |dvg

≤C .

Similarly, we have
∫
Bδ/2(x)

es2u
ε
2dvg ≤ C for some s2 > 1 and sufficiently small δ > 0.

Then (2.2) follows from the standard elliptic estimates and we finish the proof. ��
Since (uε

1, u
ε
2) blows up, we know S is not empty. Otherwise, by using a finite

covering argument and inequality (2.2), we would have ‖uε
i − uε

i ‖L∞(M) ≤ C , which
impliesmε

i ≤ C . This contradicts Lemma 2.3 (i). By the definition of S, for any x ∈ S,

μ1({x}) ≥ 1

4maxM |h1| or μ2({x}) ≥ 1

4maxM |h2| .
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In view of μ1 and μ2 are bounded, S is a finite set. We denote S = {xl}Ll=1. It follows
from (2.2) and Fatou’s lemma that

Lemma 2.5 We have

μi =
L∑

l=1

μi ({xl})δxl , i = 1, 2, (2.3)

where δx is the Dirac distribution.

Proof For any closed set V ⊂ M , we need to show

μi (V ) =
L∑

l=1

μi (V ∩ {xl}), i = 1, 2. (2.4)

In fact, we have Br (xl)∩Br (xm) = ∅ for sufficiently small r and l 	= m ∈ {1, · · · , L}.
Then ∫

V
eu

ε
i dvg =

∫
V \⋃L

l=1 Br (xl )
eu

ε
i dvg +

∫
V∩

(⋃L
l=1 Br (xl )

) euε
i dvg

=
∫
V \⋃L

l=1 Br (xl )
eu

ε
i −uε

i eu
ε
i dvg +

L∑
l=1

∫
V∩Br (xl )

eu
ε
i dvg. (2.5)

Since uε
i → −∞ and (2.2), it follows from Fatou’s lemma that

lim inf
ε→0

∫
V \⋃L

l=1 Br (xl )
eu

ε
i −uε

i eu
ε
i dvg = 0.

Letting ε → 0 in both sides of (2.5) first and then r → 0, we obtain (2.4) and finish
the proof. ��

It follows from Lemma 2.1 and (2.3) that suppμi 	= ∅, i = 1, 2. If there are at least
two points in each suppμi , then by the improvedMoser-Trudinger inequality for Toda
system (cf. [23, Proposition 2.5]), for any ε′ > 0, there exists some C = C(ε′) > 0
such that

log
∫
M
eu

ε
1dvg + log

∫
M
eu

ε
2dvg ≤ 1 + ε′

24π

∫
M

(|∇uε
1|2 + ∇uε

1∇uε
2 + |∇uε

2|2)dvg

+ uε
1 + uε

2 + C .

By choosing ε′ = 1/3 and using Lemma 2.1, we have

1

3

∫
M

(|∇uε
1|2 + ∇uε

1∇uε
2 + |∇uε

2|2)dvg ≥ −6π(uε
1 + uε

2) − C .
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This, combining with the fact that J4π−ε,4π−ε(uε
1, u

ε
2) is bounded, shows that

uε
1 + uε

2 ≥ −C,

which contradicts the assumption that (uε
1, u

ε
2) blows up. Hence, either suppμ1 or

suppμ2 has only one point.Without loss of generality, we assume that suppμ1 has only
one point and suppμ1 = {x1} since suppμ1 ⊂ S. By noticing that

∫
M h1eu

ε
1dvg = 1,

we have

h1μ1 = δx1 . (2.6)

The following result which is based on Pohozaev identities is very important in the
understanding of blow-up set.

Lemma 2.6 Denote by hiμi = σi for i = 1, 2, we have

σ 2
1 ({xl}) + σ 2

2 ({xl}) − σ1({xl})σ2({xl}) = σ1({xl}) + σ2({xl}), (2.7)

where l = 1, 2, · · · , L.

Proof Using (2.2), (2.3) and (2.6), we have G1 and G2 satisfy the following equation⎧⎪⎨
⎪⎩

−�G1 = 8π(δx1 − 1) − 4π(h2
∑L

l=1 μ2({xl})δxl − 1),

−�G2 = 8π(h2
∑L

l=1 μ2({xl})δxl − 1) − 4π(δx1 − 1),∫
M G1dvg = ∫

M G2dvg = 0.

(2.8)

It follows from standard elliptic estimates that

uε
i − uε

i → Gi in C2
loc(M \ S), i = 1, 2. (2.9)

Let (Bδ(xl); (x1, x2)) be a local coordinate system around xl andwe assume themetric
to be

g|
 = eφ((dx1)2 + (dx2)2)

with φ(0) = 0 and ∇R2φ(0) = 0. Here ∇R2 = ( ∂
∂x1

, ∂
∂x2

). Similar as the proof of in
[21, page 708], we know that

Gi = −γi ({xl})
2π

log r + ψi , i = 1, 2, (2.10)

where r = √
(x1)2 + (x2)2 and ψi is a smooth function near xl . In this coordinate

system, (2.1) can be reduced to

{
−�R2uε

1 = (8π − 2ε)eφ(h1eu
ε
1 − 1) − (4π − ε)eφ(h2eu

ε
2 − 1),

−�R2uε
2 = (8π − 2ε)eφ(h2eu

ε
2 − 1) − (4π − ε)eφ(h1eu

ε
1 − 1)

(2.11)

123
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for |x | ≤ δ, where �R2 = ∂2

∂(x1)2
+ ∂2

∂(x2)2
is the Laplacian in R2. We set

ûε
i (x) = uε

i (x) − (4π − ε)ζ(x),

where ζ(x) satisfies

{
�R2ζ = eφ(x) for |x | ≤ δ,

ζ(0) = 0 and ∇R2ζ(0) = 0.

It is clear that ζ(x) = O(|x |2) for |x | ≤ δ. By (2.11) we know ûε
i satisfies

{
−�R2 ûε

1 = (8π − 2ε)ĥ1eû
ε
1 − (4π − ε)ĥ2eû

ε
2 ,

−�R2 ûε
2 = (8π − 2ε)ĥ2eû

ε
2 − (4π − ε)ĥ1eû

ε
1

(2.12)

for |x | ≤ δ, where

ĥi (x) = eφ(x)hi (x)e
(4π−ε)ζ(x), i = 1, 2. (2.13)

It follows from the choice of φ(x) and (2.13) that

ĥi (0) = hi (xl) and ∇R2 ĥi (0) = ∇hi (xl). (2.14)

From equation (2.12) we have the Pohozaev identities as follows:

− δ

∫
∂Bδ(0)

((
∂ ûε

1

∂r

)2

− 1

2
|∇R2 ûε

1|2
)
ds

= (8π − 2ε)δ
∫

∂Bδ(0)
ĥ1e

ûε
1ds − (8π − 2ε)

∫
Bδ(0)

(2ĥ1e
ûε
1 + x · ∇R2 ĥ1e

ûε
1)dx

− (4π − ε)

∫
Bδ(0)

x · ∇R2 ûε
1ĥ2e

ûε
2dx, (2.15)

and

− δ

∫
∂Bδ(0)

∂ ûε
1

∂r

∂ ûε
2

∂r
ds +

∫
Bδ(0)

⎛
⎝∇R2 ûε

1∇R2 ûε
2 +

2∑
j=1

x ·
(

∇R2
∂ ûε

2

∂x j

)
∂ ûε

1

∂x j

⎞
⎠ dx

= −(4π − ε)δ

∫
∂Bδ(0)

ĥ2e
ûε
2ds + (8π − 2ε)

∫
Bδ(0)

(
ĥ2e

ûε
2 + x · ∇R2 ûε

2ĥ1e
ûε
1

)
dx

+ (4π − ε)

∫
Bδ(0)

x · ∇R2 ĥ2e
ûε
2dx, (2.16)
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and

− δ

∫
∂Bδ(0)

∂ ûε
1

∂r

∂ ûε
2

∂r
ds +

∫
Bδ(0)

⎛
⎝∇R2 ûε

1∇R2 ûε
2 +

2∑
j=1

x ·
(

∇R2
∂ ûε

1

∂x j

)
∂ ûε

2

∂x j

⎞
⎠ dx

= −(4π − ε)δ

∫
∂Bδ(0)

ĥ1e
ûε
1ds + (8π − 2ε)

∫
Bδ(0)

(
ĥ1e

ûε
1 + x · ∇R2 ûε

1ĥ2e
ûε
2

)
dx

+ (4π − ε)

∫
Bδ(0)

x · ∇R2 ĥ1e
ûε
1dx, (2.17)

and

− δ

∫
∂Bδ(0)

((
∂ ûε

2

∂r

)2

− 1

2
|∇R2 ûε

2|2
)
ds

= (8π − 2ε)δ
∫

∂Bδ(0)
ĥ2e

ûε
2ds − (8π − 2ε)

∫
Bδ(0)

(2ĥ2e
ûε
2 + x · ∇R2 ĥ2e

ûε
2)dx

− (4π − ε)

∫
Bδ(0)

x · ∇R2 ûε
2ĥ1e

ûε
1dx . (2.18)

Two times both sides of (2.15) and (2.18) and then plus each sides of them with (2.16)
and (2.17), we have

− 2δ
∫

∂Bδ(0)

((
∂ ûε

1

∂r

)2

+
(

∂ ûε
2

∂r

)2

+ ∂ ûε
1

∂r

∂ ûε
2

∂r

)
ds

+ δ

∫
∂Bδ(0)

(
|∇R2 ûε

1|2 + |∇R2 ûε
2|2 + ∇R2 ûε

1∇R2 ûε
2

)
ds

=3(4π − ε)δ

∫
∂Bδ(0)

(
ĥ1e

ûε
1 + ĥ2e

ûε
2

)
ds − 6(4π − ε)

∫
Bδ(0)

(
ĥ1e

ûε
1 + ĥ2e

ûε
2

)
dx

− 3(4π − ε)

∫
Bδ(0)

(
x · ∇R2 ĥ1e

ûε
1 + x · ∇R2 ĥ2e

ûε
2

)
dx . (2.19)

Letting ε → 0 first and then δ → 0 in (2.19), by using (2.9), (2.10), (2.13) and (2.14)
we conclude

− 2π

[(
γ1({xl})

2π

)2

+
(

γ2({xl})
2π

)2

+ γ1({xl})
2π

γ2({xl})
2π

]

= − 24π [h1(xl)μ1({xl}) + h2(xl)μ2({xl})] . (2.20)

Recalling that hiμi = σi for i = 1, 2, then (2.20) reduces to (2.7), this ends the proof.
��

Nowwe show by Lemma 2.6 that suppμ2 also has one point which is different with
x1.
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We know from (2.6) that σ1({x1}) = 1 and σ1({xl}) = 0 for any l ≥ 2, taking this
fact into (2.7) we obtain that

σ2({x1}) = 0 or σ2({x1}) = 2;
σ2({xl}) = 0 or σ2({xl}) = 1, ∀l ≥ 2.

Combining it with σ2(M) = ∫
M h2eu

ε
2dvg = 1, we have

σ2({xm}) = 1 for some m ≥ 2 and σ2({xl}) = 0 ∀l ∈ {1, · · · , L} \ {m}.

Without loss of generality, we assume m = 2. Then we have

h2μ2 = σ2 = δx2 . (2.21)

We would like to collect (2.6) and (2.21) as the following lemma.

Lemma 2.7 It holds that h1μ1 = δx1 and h2μ2 = δx2 with x1 	= x2.

To do blow-up analysis near xi for i = 1, 2, one still needs the upper bound of uε
j for

j ∈ {1, 2} \ {i} near xi . In fact, we have
Lemma 2.8 Suppose r is a positive numberwhich is less than dist(x1, x2)/2 andmakes
hi > 0 in Br (xi ) for i = 1, 2, there holds

sup
Br/4(xi )

(
uε
j − uε

j

)
≤ C, i, j ∈ {1, 2} and i 	= j .

Proof For i = 1, we consider the solution of

{
−�vε

1 = (8π − 2ε)h2eu
ε
2 in Br (x1),

vε
1 = 0 on ∂Br (x1).

Denote by vε
2 = uε

2 − uε
2 − vε

1, then

−�vε
2 = −(4π − ε) − (4π − ε)h1e

uε
1 ≤ −(4π − ε) in Br (x1)

since h1 > 0 in Br (x1). By Theorem 8.17 in [15] (or Theorem 4.1 in [12]) and
Lemma 2.2, we have

sup
Br/2(x1)

vε
2 ≤C

(‖(vε
2)

+‖Ls (Br (x1)) + C
)

≤C
(
‖uε

2 − uε
2‖Ls (M) + ‖vε

1‖Ls (Br (x1)) + C
)

≤C
(‖∇uε

2‖Ls (M) + ‖vε
1‖Ls (Br (x1)) + C

)
≤C

(‖vε
1‖Ls (Br (x1)) + C

)
.
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Since
∫
Br (x1)

|h2|euε
2dvg → 0 as ε → 0, it follows from Theorem 1 in [1] that∫

Br (x1)
et |vε

1 |dvg ≤ C for some t > 1, which yields that

‖vε
1‖Ls (Br (x1)) ≤ C .

Then we have

sup
Br/2(x1)

vε
2 ≤ C .

Note that ∫
Br/2(x1)

etu
ε
2dvg =

∫
Br/2(x1)

etu
ε
2etv

ε
2etv

ε
1dvg

≤C
∫
Br/2(x1)

et |vε
1 |dvg

≤C .

By the standard elliptic estimates, we have

‖vε
1‖L∞(Br/4(x1)) ≤ C .

Therefore, we obtain that

uε
2 − uε

2 ≤ C in Br/4(x1).

Similarly, we can prove

uε
1 − uε

1 ≤ C in Br/4(x2).

This finishes the proof. ��
Recalling that uε

i → −∞ and maxM uε
i (x) = uε

i (x
ε
i ), i = 1, 2, it follows from

(2.9), Lemmas 2.7 and 2.8 that

xε
i → xi as ε → 0, i = 1, 2.

Let (
i ; (x1, x2)) be an isothermal coordinate system around xi and we assume the
metric to be

g|
i = eφi ((dx1)2 + (dx2)2), φi (0) = 0.

Similar as Case 1 in [21] and Lemma 2.5 in [9], we have

uε
i (x

ε
i + r ε

i x) − mε
i → −2 log(1 + πhi (xi )|x |2), i = 1, 2,
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where mε
i = maxM uε

i and r
ε
i = e−mε

i /2.
By taking (2.21) into (2.8), we have

⎧⎪⎨
⎪⎩

−�G1 = 8π(δx1 − 1) − 4π(δx2 − 1),

−�G2 = 8π(δx2 − 1) − 4π(δx1 − 1),∫
M G1dvg = ∫

M G2dvg = 0.

Recalling that for any s ∈ (1, 2), for i = 1, 2, we have uε
i − uε

i → Gi weakly in
W 1,s(M) and strongly in C2

loc(M \ {x1, x2}) as ε → 0.
It was proved by Li-Li in [21, page 708] that, in 
1,

G1(x, x1) = −4 log r + A1(x1) + f1, G2(x, x1) = 2 log r + A2(x1) + g1,

where r2 = x21 + x22 , Ai (x1) (i = 1, 2) are constants and f1, g1 are two smooth
functions which are zero at x1. In 
2,

G1(x, x2) = 2 log r + A1(x2) + f2, G2(x, x2) = −4 log r + A2(x2) + g2,

where Ai (x2) (i = 1, 2) are constants and f2, g2 are two smooth functions which are
zero at x2.

3 The lower bound for J4�,4� in Case 3

In this section, we shall derive an explicit lower bound of J4π,4π under the assumptions
(uε

1, u
ε
2) blows up and Case 3 happens.

Following closely the calculations in [21, Section 3], we have

J4π−ε,4π−ε(u
ε
1, u

ε
2) ≥ − 4π − 4π log(πh1(x1)) − 2π A1(x1)

− 4π − 4π log(πh2(x2)) − 2π A2(x2)

+ oε(1) + oL(1) + oδ(1).

By letting ε → 0 first, then L → +∞ and then δ → 0, we obtain finally that

inf
H

J4π,4π ≥ − 4π − 4π log(πh1(x1)) − 2π A1(x1)

− 4π − 4π log(πh2(x2)) − 2π A2(x2)

≥ − 8π − 8π logπ − 2π max
x∈M+

1

(2 log h1(x) + A1(x))

− 2π max
x∈M+

2

(2 log h2(x) + A2(x)) . (3.1)
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4 Completion of the proof of Theorem 1.4

In this section, we shall use the test functions constructed in [21] to finish the proof
of our main theorem.

Let φε
1 and φε

2 be defined as [21, Section 5]. Suppose that

2 log hi (pi ) + Ai (pi ) = max
x∈M+

i

(2 log hi (x) + Ai (x)) for i = 1, 2.

Following directly the calculations in [21, Section 5] and [30, Section 4], we obtain

J4π,4π (φε
1, φ

ε
2) ≤ − 8π − 8π logπ − 4π log h1(p1) − 2π A1(p1)

− 4π log h2(p2) − 2π A2(p2)

− [
� log h1(p1) + 4π − 2K (p1)

]
ε2(− log ε2)

− [
� log h2(p2) + 4π − 2K (p2)

]
ε2(− log ε2)

+ o(ε2(− log ε2)).

Then under the condition (1.11), we have for sufficiently small ε that

J4π,4π (φε
1, φ

ε
2) < − 8π − 8π logπ − 4π log h1(p1) − 2π A1(p1)

− 4π log h2(p2) − 2π A2(p2).

It is easy to check that
∫
M hieφε

i dvg > 0 for i = 1, 2, we define

φ̃ε
i = φε

i − log
∫
M
hie

φε
i dvg, i = 1, 2.

Then (φ̃ε
1, φ̃

ε
2) ∈ H. Since J4π,4π (u1 + c1, u2 + c2) = J4π,4π (u1, u2) for any c1, c2 ∈

R, we have for sufficiently small ε that

inf
H

J4π,4π ≤J4π,4π (φ̃ε
1, φ̃

ε
2) = J4π,4π (φε

1, φ
ε
2)

< − 8π − 8π logπ − 2π max
x∈M+

(2 log h1(x) + A1(x))

− 2π max
x∈M+

2

(2 log h2(x) + A2(x)) . (4.1)

Combining (3.1) and (4.1), one knows that (uε
1, u

ε
2) does not blow up. So (uε

1, u
ε
2)

converges to some (u1, u2) which minimizes J4π,4π in H and solves (1.10). The
smooth of u1 and u2 follows from the standard elliptic estimates. Finally, we complete
the proof of Theorem 1.4. ��
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