

Existence results for Toda systems with sign-changing prescribed functions: Part I

Linlin Sun¹ · Xiaobao Zhu²

Received: 30 October 2024 / Accepted: 25 July 2025

The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

Let (M, g) be a compact Riemann surface with area 1, we shall study the Toda system

$$\begin{cases} -\Delta u_1 = 2\rho_1 \left(h_1 e^{u_1} - 1 \right) - \rho_2 \left(h_2 e^{u_2} - 1 \right), \\ -\Delta u_2 = 2\rho_2 \left(h_2 e^{u_2} - 1 \right) - \rho_1 \left(h_1 e^{u_1} - 1 \right), \end{cases}$$

$$(0.1)$$

on (M, g) with $\rho_1 = 4\pi$, $\rho_2 \in (0, 4\pi)$, h_1 and h_2 are two smooth functions on M. In Jost-Lin-Wang's celebrated article (Comm. Pure Appl. Math., 59 (2006), no. 4, 526–558), they obtained a sufficient condition for the existence of Eq. (0.1) when h_1 and h_2 are both positive. In this paper, we shall improve this result to the case h_1 and h_2 can change signs. We shall pursue a variational method and use the standard blowup analysis. Among other things, the main contribution in our proof is to show that the blowup can only happen at one point where h_1 is positive.

1 Introduction

Let (M, g) be a compact Riemann surface with area 1, $h_i \in C^{\infty}(M)$ and ρ_i be positive constant for i = 1, 2. The critical point (u_1, u_2) of the functional

$$J_{\rho_1,\rho_2}(u_1,u_2) = \frac{1}{3} \int_M (|\nabla u_1|^2 + \nabla u_1 \nabla u_2 + |\nabla u_2|^2) + \rho_1 \int_M u_1 + \rho_2 \int_M u_2$$

on the Hilbert space

$$\mathcal{H} = \left\{ (u_1, u_2) \in H^1\left(M\right) \times H^1\left(M\right) : \ \int_M h_1 e^{u_1} = \int_M h_2 e^{u_2} = 1 \right\}$$

Communicated by A. Mondino.

> Linlin Sun sunll@xtu.edu.cn

Published online: 20 August 2025

School of Mathematics and Computational Science, Xiangtan University, 411105 Xiangtan, P. R. China

School of Mathematics, Renmin University of China, 100872 Beijing, P. R. China

satisfies

$$\begin{cases} -\Delta u_1 = 2\rho_1 \left(h_1 e^{u_1} - 1 \right) - \rho_2 \left(h_2 e^{u_2} - 1 \right), \\ -\Delta u_2 = 2\rho_2 \left(h_2 e^{u_2} - 1 \right) - \rho_1 \left(h_1 e^{u_1} - 1 \right). \end{cases}$$
(1.1)

In the literal, people calls (1.1) as Toda system. It can be seen as the Frenet frame of holomorphic curves in \mathbb{CP}^2 (see [9]) in geometry, and also arises in physics in the study of the nonabelian Chern-Simons theory in the self-dual case, when a scalar Higgs field is coupled to a gauge potential; see [5, 22, 24]. One can easily find that Toda system (1.1) is a generalization of the mean field equation

$$-\Delta u = \rho(he^u - 1). \tag{1.2}$$

If *u* is a solution of Eq. (1.2), then one has $\int_M he^u = 1$. Therefore, people solves Eq. (1.2) in Hilbert space

$$X = \left\{ u \in H^{1}(M) : \int_{M} he^{u} = 1 \right\}.$$

Since Eq. (1.2) has a variational structure, thanks to the Moser-Trudinger inequality (cf. [4, 6])

$$\log \int_{M} e^{u} \le \frac{1}{16\pi} \int_{M} |\nabla u|^{2} + \int_{M} u + C,$$

it has a minimal type solution in X when $\rho \in (0, 8\pi)$. However, when $\rho = 8\pi$, the situation becomes subtle. The famous Kazdan-Warner problem [12] states that under what kind of condition on h, the equation

$$-\Delta u = 8\pi (he^u - 1) \tag{1.3}$$

has a solution. Necessarily, one needs $\max_M h > 0$. By using blowup argument and a variational method, Ding, Jost, Li and Wang [4] attacked this problem successfully. Assuming h is positive, if

$$\Delta \log h(p_0) + 8\pi - 2K(p_0) > 0, \tag{1.4}$$

where K is the Gauss curvature of M, p_0 is the maximum point of $2 \log h(p) + A_p$ on M, $A_p = \lim_{x \to p} \left(G_p(x) + 4 \log \operatorname{dist}(x, p) \right)$ and G_p is the Green function which satisfies

$$\begin{cases} -\Delta G_p = 8\pi (\delta_p - 1), \\ \int_M G_p = 0, \end{cases}$$

then Eq. (1.3) has a minimal type solution. Yang and the second author [25] generalized this existence result to the case h is nonnegative. With different arguments, the first author and Zhu [20] and the second author [27] proved respectively the Ding-Jost-Li-Wang condition (1.4) is still sufficient for the existence of Eq. (1.3) when h changes signs. The mentioned works are all based on variational method. We remark that these results were also obtained by using flow method [15, 16, 19, 23].

To well understand the analytic properties of the Toda system, Jost-Wang [10] derived the Moser-Trudinger inequality for it:

$$\inf_{(u_1, u_2) \in \mathcal{H}} J_{\rho_1, \rho_2} \ge -C \quad \text{iff} \quad \rho_1, \rho_2 \in (0, 4\pi].$$
 (1.5)

From this inequality, we know that J_{ρ_1,ρ_2} is coercive and hence attains its infimum when $\rho_1, \rho_2 \in (0, 4\pi)$. However, when ρ_1 or ρ_2 equals 4π , the existence problem also becomes subtle. In this paper, we shall put our attention on minimal type solution. Hence, throughout this paper, we assume $\rho_i \leq 4\pi$, i = 1, 2.

Let us review the existence result when one of ρ_1 and ρ_2 equals 4π , which was obtained by Jost, Lin and Wang when h_1 and h_2 are both positive.

Theorem 1.1 (Jost-Lin-Wang [11]) Let (M, g) be a compact Riemann surface with Gauss curvature K. Let $h_1, h_2 \in C^2(M)$ be two positive functions and $\rho_2 \in (0, 4\pi)$. Suppose that

$$\Delta \log h_1(x) + (8\pi - \rho_2) - 2K(x) > 0, \quad \forall x \in M, \tag{1.6}$$

then $J_{4\pi,\rho_2}$ has a minimizer $(u_1,u_2) \in \mathcal{H}$ which satisfies

$$\begin{cases} -\Delta u_1 = 8\pi \left(h_1 e^{u_1} - 1 \right) - \rho_2 \left(h_2 e^{u_2} - 1 \right), \\ -\Delta u_2 = 2\rho_2 \left(h_2 e^{u_2} - 1 \right) - 4\pi \left(h_1 e^{u_1} - 1 \right). \end{cases}$$
(1.7)

When $\rho_1 = \rho_2 = 4\pi$ and both h_1 and h_2 are positive, we have

Theorem 1.2 (Li-Li [14], Jost-Lin-Wang [11]) Let (M, g) be a compact Riemann surface with Gauss curvature K. Let $h_1, h_2 \in C^2(M)$ be two positive functions. Suppose that

$$\min\{\Delta \log h_1(x), \Delta \log h_2(x)\} + 4\pi - 2K(x) > 0, \quad \forall x \in M,$$
(1.8)

then $J_{4\pi,4\pi}$ has a minimizer $(u_1,u_2) \in \mathcal{H}$ which satisfies

$$\begin{cases} -\Delta u_1 = 8\pi \ (h_1 e^{u_1} - 1) - 4\pi \ (h_2 e^{u_2} - 1) \ , \\ -\Delta u_2 = 8\pi \ (h_2 e^{u_2} - 1) - 4\pi \ (h_1 e^{u_1} - 1) \ . \end{cases}$$

We remark that Li-Li obtained Theorem 1.2 when $h_1 = h_2 = 1$ and Jost-Lin-Wang obtained it for general positive h_1 and h_2 .

Motivated mostly by works in [4, 20, 25, 27], we would like to release conditions (1.6) and (1.8) as much as possible. Comparing with the sufficient conditions in [4, 20, 25, 27], we believe that conditions (1.6) and (1.8) can release to h_i may change signs and the conditions only need hold on maximum points of the prescribed functions, namely h_1 and h_2 . In the first step to this aim, we are successful to release (1.6) when h_1 and h_2 can change signs. To state our result, we introduce two Green functions first. Let $G_1(\cdot, p)$ and $G_2(\cdot, p)$ satisfy

$$\begin{cases}
-\Delta G_{1}(\cdot, p) = 8\pi(\delta_{p} - 1) - \rho_{2}(h_{2}e^{G_{2}(\cdot, p)} - 1), \\
-\Delta G_{2}(\cdot, p) = 2\rho_{2}(h_{2}e^{G_{2}(\cdot, p)} - 1) - 4\pi(\delta_{p} - 1), \\
\int_{M} G_{1}(\cdot, p) = 0, \quad \int_{M} h_{2}e^{G_{2}(\cdot, p)} = 1, \quad \sup_{M} G_{2}(\cdot, p) \leq C,
\end{cases}$$
(1.9)

where δ_p is the Dirac distribution. It was proved in [14] (page 708) that in a small neighborhood around p,

$$G_1(\cdot, p) = -4\log r + A_1(p) + f, \quad G_2(\cdot, p) = 2\log r + A_2(p) + g,$$
 (1.10)

where $r = \operatorname{dist}(\cdot, p)$, $A_i(p)$ (i = 1, 2) are constants and f, g are two smooth functions which are zero at p. Now we are prepared to state our main theorem.

Theorem 1.3 Let (M, g) be a compact Riemann surface with Gauss curvature K. Let $h_1, h_2 \in C^2(M)$ which are positive somewhere and $\rho_2 \in (0, 4\pi)$. Denote $M_+ = \{x \in M : h_1(x) > 0\}$. Suppose that

$$2\log h_1(p) + A_1(p) = \max_{x \in M_+} (2\log h_1(x) + A_1(x)),$$

218 Page 4 of 22 L. Sun, X. Zhu

where $A_1(p)$ is defined in (1.10). If

$$\Delta \log h_1(p) + (8\pi - \rho_2) - 2K(p) > 0, \tag{1.11}$$

then $J_{4\pi,\rho_2}$ has a minimizer $(u_1,u_2) \in \mathcal{H}$ which satisfies (1.7).

In the proof of Theorem 1.3, the function A_1 is used to locate the possible point of blow-up. This localization appears also in blow-up analysis and constructions in [3, 13, 18]. We greatly appreciate the reviewer for pointing out these articles to us.

At the end of the introduction, we would like to mention some related works which deal with sign-changing potential in the critical case with respect to Moser-Trudinger type inequalities ([17, 26]). For the generalization of Theorem 1.2, we can also release the condition and we have given the details in the paper [21].

The outline of the rest of the paper is following: In Sect. 2, we do some analysis on the minimizing sequence; In Sect. 3, we estimate the lower bound for $J_{4\pi,\rho_2}$; Finally, we complete the proof of Theorem 1.3 in the last section. Throughout the whole paper, the constant C is varying from line to line and even in the same line, we do not distinguish sequence and its subsequences since we just consider the existence result.

2 Analysis on the minimizing sequence

To show the functional $J_{4\pi,\rho_2}$ is bounded from below, we consider the perturbed functional $J_{4\pi-\epsilon,\rho_2}$. Since the infimum of the functional $J_{4\pi-\epsilon,\rho_2}$ in \mathcal{H} can be attained by $(u_1^{\epsilon}, u_2^{\epsilon})$, we call $(u_1^{\epsilon}, u_2^{\epsilon})$ the minimizing sequence and analysis it in this section.

For $\rho_2 \in (0, 4\pi)$, in view of inequality (1.5), one knows for any $\epsilon \in (0, 4\pi)$ there exists a $\left(u_1^{\epsilon}, u_2^{\epsilon}\right) \in \mathcal{H}$ such that $J_{4\pi-\epsilon, \rho_2}\left(u_1^{\epsilon}, u_2^{\epsilon}\right) = \inf_{(u_1, u_2) \in \mathcal{H}} J_{4\pi-\epsilon, \rho_2}\left(u_1, u_2\right)$. Direct calculation shows on M,

$$\begin{cases} -\Delta u_1^{\epsilon} = (8\pi - 2\epsilon) \left(h_1 e^{u_1^{\epsilon}} - 1 \right) - \rho_2 \left(h_2 e^{u_2^{\epsilon}} - 1 \right), \\ -\Delta u_2^{\epsilon} = 2\rho_2 \left(h_2 e^{u_2^{\epsilon}} - 1 \right) - (4\pi - \epsilon) \left(h_1 e^{u_1^{\epsilon}} - 1 \right). \end{cases}$$
(2.1)

Denote $\overline{u_i^{\epsilon}} = \int_M u_i^{\epsilon}$ and $m_i^{\epsilon} = \max_M u_i^{\epsilon} = u_i^{\epsilon} \left(x_i^{\epsilon} \right)$ for some $x_i^{\epsilon} \in M$. Since $\left(u_1^{\epsilon}, u_2^{\epsilon} \right)$ minimizes $J_{4\pi-\epsilon,\rho_2}$ in \mathcal{H} , we have $\int_M e^{u_i^{\epsilon}} \left(i = 1,2 \right)$ is bounded from below and above by two positive constants. Namely,

Lemma 2.1 There exist two positive constants C_1 and C_2 such that

$$C_1 \le \int_M e^{u_i^{\epsilon}} \le C_2, \quad i = 1, 2.$$

Proof For i=1,2, the lower bound is easy since $\int_M h_i e^{u_i^{\epsilon}} = 1$ and $\max_M h_i > 0$. Since \mathcal{H} is not empty, we can choose $(v_1, v_2) \in \mathcal{H}$, then

$$J_{4\pi-\epsilon,\rho_2}\left(u_1^{\epsilon},u_2^{\epsilon}\right) = \inf_{(u_1,u_2)\in\mathcal{H}} J_{4\pi-\epsilon,\rho_2}\left(u_1,u_2\right) \leq J_{4\pi-\epsilon,\rho_2}\left(v_1,v_2\right) \to J_{4\pi,\rho_2}\left(v_1,v_2\right) \leq C.$$

This together with the Moser-Trudinger inequality (1.5) and Jensen's inequality yields

$$\begin{split} \log \int_{M} e^{u_{1}^{\epsilon}} + \log \int_{M} e^{u_{2}^{\epsilon}} &\leq \frac{1}{12\pi} \int_{M} \left(\left| \nabla u_{1}^{\epsilon} \right|^{2} + \left| \nabla u_{1}^{\epsilon} \nabla u_{2}^{\epsilon} + \left| \nabla u_{2}^{\epsilon} \right|^{2} \right) + \overline{u_{1}^{\epsilon}} + \overline{u_{2}^{\epsilon}} + C \\ &= \frac{1}{4\pi} J_{4\pi - \epsilon, \rho_{2}} \left(u^{\epsilon} \right) + \frac{\epsilon}{4\pi} \overline{u_{1}^{\epsilon}} + \frac{4\pi - \rho_{2}}{4\pi} \overline{u_{2}^{\epsilon}} + C \\ &\leq \frac{\epsilon}{4\pi} \log \int_{M} e^{u_{1}^{\epsilon}} + \frac{4\pi - \rho_{2}}{4\pi} \log \int_{M} e^{u_{2}^{\epsilon}} + C. \end{split}$$

This combining with $\int_M e^{u_i^{\epsilon}}$ is bounded from below by some $C_1 > 0$ shows that $\int_M e^{u_i^{\epsilon}} \leq C_2$ for some $C_2 > 0$. This completes the proof.

Lemma 2.2 For any $s \in (1, 2)$, $\|\nabla u_i^{\epsilon}\|_{L^s(M)} < C$ for i = 1, 2.

Proof Let s' = 1/s > 2, we know by definition that

$$\|\nabla u_1^{\epsilon}\|_{L^s(M)} = \sup\left\{\left|\int_{M} \nabla u_1^{\epsilon} \nabla \phi\right| : \phi \in W^{1,s'}(M), \int_{M} \phi = 0, \|\phi\|_{W^{1,s'}(M)} = 1\right\}.$$

The Sobolev embedding theorem shows that $\|\phi\|_{L^{\infty}(M)} \leq C$ for some constant C. Then it follows by Eq. (2.1) and Lemma 2.1 that

$$\left| \int_{M} \nabla u_{1}^{\epsilon} \nabla \phi \right| = \left| \int_{M} \phi \left(-\Delta u_{1}^{\epsilon} \right) \right|$$

$$= \left| \int_{M} \phi \left[(8\pi - 2\epsilon) \left(h_{1} e^{u_{1}^{\epsilon}} - 1 \right) - \rho_{2} \left(h_{2} e^{u_{2}^{\epsilon}} - 1 \right) \right] \right|$$

$$< C$$

Therefore we have $\|\nabla u_1^{\epsilon}\|_{L^s(M)} \leq C$. Similarly, we have $\|\nabla u_2^{\epsilon}\|_{L^s(M)} \leq C$. This ends the proof.

Concerning $(u_1^{\epsilon}, u_2^{\epsilon})$, we have the following equivalent characterizations.

Lemma 2.3 The following three items are equivalent:

- $\begin{array}{ll} (i) \ \ m_1^\epsilon + m_2^\epsilon \to +\infty \ as \ \epsilon \to 0; \\ (ii) \ \ \int_M \left(| \underline{\nabla} u_1^\epsilon |^2 + \nabla u_1^\epsilon \nabla u_2^\epsilon + | \nabla u_2^\epsilon |^2 \right) \to +\infty \ as \ \epsilon \to 0; \end{array}$
- (iii) $\overline{u_1^{\epsilon}} + \overline{u_2^{\epsilon}} \to -\infty \text{ as } \epsilon \to 0$

Proof (ii) \Leftrightarrow (iii): Since $J_{4\pi-\epsilon,\rho_2}$ is bounded, (ii) is equivalent to

$$(4\pi - \epsilon) \overline{u_1^{\epsilon}} + \rho_2 \overline{u_2^{\epsilon}} \to -\infty \text{ as } \epsilon \to 0.$$
 (2.2)

Using Lemma 2.1 and Jensen's inequality, we have $\overline{u_i^{\epsilon}} \leq C$ for i = 1, 2. Therefore, (2.2) is equivalent to (iii) and then (ii) is equivalent to (iii).

 $(i) \Rightarrow (ii)$: Suppose not, we have

$$\int_{M} \left| \nabla u_{1}^{\epsilon} \right|^{2} + \int_{M} \left| \nabla u_{2}^{\epsilon} \right|^{2} \leq 2 \int_{M} \left(\left| \nabla u_{1}^{\epsilon} \right|^{2} + \left| \nabla u_{1}^{\epsilon} \nabla u_{2}^{\epsilon} + \left| \nabla u_{2}^{\epsilon} \right|^{2} \right) \leq C.$$

Meanwhile, by (ii) \Leftrightarrow (iii) one knows $\overline{u_1^{\epsilon}} + \overline{u_2^{\epsilon}} \ge -C$. So $\overline{u_i^{\epsilon}}$ is bounded for i = 1, 2. By Poincaré's inequality, we have for i = 1, 2 that

$$\int_{M} \left(u_{i}^{\epsilon}\right)^{2} - \overline{u_{i}^{\epsilon}}^{2} = \int_{M} (u_{i}^{\epsilon} - \overline{u_{i}^{\epsilon}})^{2} \leq C \int_{M} |\nabla u_{i}^{\epsilon}|^{2} \leq C.$$

218 Page 6 of 22 L. Sun, X. Zhu

So (u_i^{ϵ}) is bounded in $L^2(M)$. Since $\|\nabla u_i^{\epsilon}\|_{L^2(M)}$ and $\overline{u_i^{\epsilon}}$ are both bounded, we have by the Moser-Trudinger inequality that $\left(e^{u_i^{\epsilon}}\right)$ is bounded in $L^s(M)$ for any $s \geq 1$. Then by using elliptic estimates to (2.1) we obtain that $\left(u_i^{\epsilon}\right)$ is bounded in $W^{2,2}(M)$ and then $\|u_i^{\epsilon}\|_{L^\infty(M)}$ is bounded. Therefore, $m_i^{\epsilon} \leq C$ for i=1,2. This contradicts (i).

 $(ii)\Rightarrow (i)$: If not, then we have $m_1^\epsilon+m_2^\epsilon\leq C$. Using Lemma 2.1, we have $m_i^\epsilon\geq C$ for i=1,2. So m_i^ϵ is bounded for i=1,2. Then $\left(e^{u_i^\epsilon}\right)$ is bounded. Since by Lemma 2.2, $u_i^\epsilon-\overline{u_i^\epsilon}$ is bounded in $L^s(M)$ for any s>1, we have by using elliptic estimates to (2.1) that $u_i^\epsilon-\overline{u_i^\epsilon}$ is bounded. Since $(ii)\Leftrightarrow (iii)$, we have $\overline{u_1^\epsilon}+\overline{u_2^\epsilon}\to -\infty$. Notice that $\overline{u_i^\epsilon}\leq C$, we have $\overline{u_1^\epsilon}$ or $\overline{u_2^\epsilon}$ tends to $-\infty$. Without loss of generality, suppose $\overline{u_1^\epsilon}$ tends to $-\infty$. Then

$$1 = \int_{M} h_1 e^{u_1^{\epsilon}} = \int_{M} h_1 e^{u_1^{\epsilon} - \overline{u_1^{\epsilon}}} e^{\overline{u_1^{\epsilon}}} \to 0 \text{ as } \epsilon \to 0.$$

This is a contradiction.

Definition 2.1 (*Blow up*) We call $(u_1^{\epsilon}, u_2^{\epsilon})$ blows up, if one of the three items in Lemma 2.3 holds.

When $(u_1^{\epsilon}, u_2^{\epsilon})$ blows up, there holds

Lemma 2.4 Let $(u_1^{\epsilon}, u_2^{\epsilon})$ minimize $J_{4\pi-\epsilon, \rho_2}$ in \mathcal{H} . If $(u_1^{\epsilon}, u_2^{\epsilon})$ blows up, then

$$\overline{u_1^{\epsilon}} \to -\infty \text{ as } \epsilon \to 0 \text{ and } \overline{u_2^{\epsilon}} \ge -C.$$

Proof Since $J_{4\pi-\epsilon,\rho_2}\left(u_1^{\epsilon},u_2^{\epsilon}\right)$ is bounded, we have by (1.5) that

$$C \geq J_{4\pi-\epsilon,\rho_2} \left(u_1^{\epsilon}, u_2^{\epsilon} \right)$$

$$\geq \frac{1}{3} \int_M \left(\left| \nabla u_1^{\epsilon} \right|^2 + \left| \nabla u_1^{\epsilon} \nabla u_2^{\epsilon} + \left| \nabla u_2^{\epsilon} \right|^2 \right) + (4\pi - \epsilon) \overline{u_1^{\epsilon}} + \rho_2 \overline{u_2^{\epsilon}}$$

$$\geq C - \epsilon \overline{u_1^{\epsilon}} - (4\pi - \rho_2) \overline{u_2^{\epsilon}}.$$

Since $\overline{u_1^{\epsilon}} \leq C$ and $\rho_2 < 4\pi$, we have

$$\overline{u_2^{\epsilon}} \geq -C$$
.

If $(u_1^{\epsilon}, u_2^{\epsilon})$ blows up, it follows from Lemma 2.3 that $\overline{u_1^{\epsilon}} \to -\infty$ as $\epsilon \to 0$. This finishes the proof.

If $(u_1^{\epsilon}, u_2^{\epsilon})$ does not blow up, then by Lemma 2.3, one can show that $(u_1^{\epsilon}, u_2^{\epsilon})$ converges to (u_1^0, u_2^0) in \mathcal{H} and (u_1^0, u_2^0) minimizes $J_{4\pi, \rho_2}$. The proof of Theorem 1.3 terminates in this case. Therefore, we assume $(u_1^{\epsilon}, u_2^{\epsilon})$ blows up in the rest of this paper.

By Lemma 2.2, there exist G_i , i=1,2 such that $u_1^{\epsilon} - \overline{u_1^{\epsilon}} \rightharpoonup G_1$ and $u_2^{\epsilon} \rightharpoonup G_2$ weakly in $W^{1,s}(M)$ for any 1 < s < 2 as $\epsilon \to 0$. Since $\left(e^{u_i^{\epsilon}}\right)$ is bounded in $L^1(M)$ we may extract a subsequence (still denoted $e^{u_i^{\epsilon}}$) such that $e^{u_i^{\epsilon}}$ converges in the sense of measures on M to some nonnegative bounded measure μ_i for i=1,2. We set

$$\gamma_1 = 8\pi h_1 \mu_1 - \rho_2 h_2 \mu_2, \quad \gamma_2 = 2\rho_2 h_2 \mu_2 - 4\pi h_1 \mu_1$$

and

$$S_i = \{x \in M : |\gamma_i(\{x\})| \ge 4\pi\}, i = 1, 2.$$

Let $S = S_1 \cup S_2$. By Theorem 1 in [1], it is easy to show that for any $\Omega \subset\subset M\setminus S$,

$$u_i^{\epsilon} - \overline{u_i^{\epsilon}}$$
 is uniformly bounded in Ω , $i = 1, 2$. (2.3)

Since $(u_1^{\epsilon}, u_2^{\epsilon})$ blows up, we know S is not empty (Or else, with a finite covering argument, we have by (2.3) that $||u_i^{\epsilon} - \overline{u_i^{\epsilon}}||_{L^{\infty}(M)} \le C$, then $m_i^{\epsilon} \le C$, this contradicts with Lemma 2.3 (i)). Meanwhile, by the definition of S, we have for any $x \in S$,

$$\mu_1(\{x\}) \ge \frac{1}{4 \max_M |h_1|} \text{ or } \mu_2(\{x\}) \ge \frac{\pi}{\rho_2 \max_M |h_2|}.$$

In view of μ_1 and μ_2 are bounded, S is a finite set. We denote $S = \{x_l\}_{l=1}^L$. It follows from (2.3) and Fatou's lemma that

$$\mu_1 = \sum_{l=1}^{L} \mu_1 (\{x_l\}) \, \delta_{x_l} \text{ and } \mu_2 = e^{G_2} + \sum_{l=1}^{L} \mu_2 (\{x_l\}) \, \delta_{x_l}.$$

Lemma 2.5 supp μ_1 is a single point set.

Proof It follows from Lemma 2.1 that supp $\mu_1 \neq \emptyset$. If there are two different points in supp μ_1 , then by Lemma 2.1 and the improved Moser-Trudinger inequality (cf. [2], Theorem 2.1), for any $\epsilon' > 0$, there exists some $C = C(\epsilon') > 0$ such that

$$C \le \log \int_{M} e^{u_1^{\epsilon}} \le \left(\frac{1}{32\pi} + \epsilon'\right) \int_{M} \left|\nabla u_1^{\epsilon}\right|^2 + \overline{u_1^{\epsilon}} + C. \tag{2.4}$$

Since

$$C \geq J_{4\pi-\epsilon,\rho_{2}}\left(u_{1}^{\epsilon},u_{2}^{\epsilon}\right)$$

$$=\frac{1}{3}\int_{M}\left(\left|\nabla u_{1}^{\epsilon}\right|^{2}+\nabla u_{1}^{\epsilon}\nabla u_{2}^{\epsilon}+\left|\nabla u_{2}^{\epsilon}\right|^{2}\right)+\left(4\pi-\epsilon\right)\overline{u_{1}^{\epsilon}}+\rho_{2}\overline{u_{2}^{\epsilon}}$$

$$=\frac{1}{4}\int_{M}\left|\nabla u_{1}^{\epsilon}\right|^{2}+\left(4\pi-\epsilon\right)\overline{u_{1}^{\epsilon}}+\frac{1}{3}\int_{M}\left|\nabla\left(u_{2}^{\epsilon}+\frac{1}{2}u_{1}^{\epsilon}\right)\right|^{2}+\rho_{2}\overline{u_{2}^{\epsilon}}$$

$$\geq\frac{1}{4}\int_{M}\left|\nabla u_{1}^{\epsilon}\right|^{2}+\left(4\pi-\epsilon\right)\overline{u_{1}^{\epsilon}}-C,$$

$$(2.5)$$

then we have by combining (2.4) and (2.5) that

$$\overline{u_1^{\epsilon}} \ge -C.$$

In view of Lemmas 2.3 and 2.4, this is a contradiction. Therefore, supp μ_1 is a single point set. This completes the proof.

Since by (2.3) we know supp $\mu_1 \subset S$, we can assume without loss of generality that supp $\mu_1 = \{x_1\}$. By noticing that $\int_M h_1 e^{u_1^{\epsilon}} = 1$, we have $h_1 \mu_1 = \delta_{x_1}$.

Lemma 2.6 There holds $\gamma_2(\{x_l\}) \le -4\pi$ if $x_l \ne x_1$ and $\gamma_2(\{x_1\}) < 4\pi$.

Proof Since of Lemma 2.4 and (2.3), we know $\overline{u_2^{\epsilon}} \ge -C$. For any $x_l \in S$, choosing r > 0 sufficiently small, we have $u_2^{\epsilon} \mid_{\partial B_r(x_l)} \ge -C_0$ for some constant C_0 . Let w_2^{ϵ} be the solution of

$$\begin{cases} -\Delta w_2^{\epsilon} = 2\rho_2 \left(h_2 e^{u_2^{\epsilon}} - 1 \right) - (4\pi - \epsilon) \left(h_1 e^{u_1^{\epsilon}} - 1 \right) & \text{in } B_r(x_l), \\ w_2^{\epsilon} = -C_0 & \text{on } \partial B_r(x_l). \end{cases}$$

218 Page 8 of 22 L. Sun, X. Zhu

By the maximum principle $w_2^{\epsilon} \leq u_2^{\epsilon}$ in $B_r(x_l)$. Since $2\rho_2 h_2 e^{u_2^{\epsilon}} - (4\pi - \epsilon) h_1 e^{u_1^{\epsilon}}$ is bounded in $L^1(B_r(x_l))$, $w_2^{\epsilon} \rightarrow w_2$ weakly in $W^{1,s}(B_r(x_l))$ for any 1 < s < 2, where w_2 is the solution of

$$\begin{cases} -\Delta w_2 = 2\rho_2 \left(h_2 e^{G_2} - 1 \right) + 4\pi + \gamma_2 \left(\{ x_l \} \right) \delta_{x_l} & \text{in } B_r(x_l), \\ w_2 = -C_0 & \text{on } \partial B_r(x_l). \end{cases}$$

Since $h_1\mu_1 = \delta_{x_1}$, if $\gamma_2(\{x_l\}) > 0$, then $h_2(x_l) > 0$ and one has

$$2\rho_2 \left(h_2 e^{G_2} - 1 \right) + 4\pi \ge -C \text{ near } x_l.$$

Then we have $-\Delta w_2 \ge \gamma_2(\{x_l\}) \delta_{x_l} - C$ in $B_r(x_l)$ (Here, for simplicity, we assume r is small enough to ensure $h_2(x_l) > 0$ in $B_r(x_l)$). Therefore

$$w_2 \ge -\frac{1}{2\pi} \gamma_2 (\{x_l\}) \log |x - x_l| - C \text{ in } B_r(x_l).$$

Thus $e^{w_2} \ge C/|x-x_l|^{\frac{\gamma_2(|x_l|)}{2\pi}}$. Note that it follows by Fatou's lemma that

$$\int_{B_r(x_I)} e^{w_2} \le \lim_{\epsilon \to 0} \int_{B_r(x_I)} e^{w_2^{\epsilon}} \le \lim_{\epsilon \to 0} \int_{B_r(x_I)} e^{u_2^{\epsilon}} \le C.$$

Then we have

$$\gamma_2(\{x_l\}) < 4\pi, \ \forall l = 1, 2, \dots, L.$$

If $x_l \neq x_1$, we have $\gamma_2(\{x_l\}) \leq -4\pi$. In fact, if $\gamma_2(\{x_l\}) > -4\pi$, then since $x_l \neq x_1$, one has

$$\gamma_1\left(\{x_l\}\right) = -\rho_2 h_2(x_l) \mu_2\left(\{x_l\}\right) = -\frac{1}{2} \gamma_2\left(\{x_l\}\right) \in (-2\pi, 2\pi).$$

Then $x_l \notin S$. A contradiction. This ends the proof.

Now we are prepared to prove the following lemma, which can be seen as a key in the proof of our main theorem. We remark that this lemma is obtained much more directly with the help of Proposition 2.4 in [11] when the prescribed functions h_1 and h_2 are positive. However, when h_1 or h_2 changes signs, we do not have the counterpart of Proposition 2.4 in [11] in the hand, and therefore more effort is needed in our situation.

Lemma 2.7 We have $u_2^{\epsilon} \leq C$.

Proof By Lemma 2.6, we divide the whole proof into two cases.

Case 1 $\gamma_2(\{x_l\}) \le -4\pi \ (x_l \ne x_1)$.

In this case, we have $2\rho_2 h_2(x_l)\mu_2\left(\{x_l\}\right) \le -4\pi$, then $h_2(x_l) < 0$ and $\mu_2\left(\{x_l\}\right) > 0$. We can choose r sufficiently small such that $h_2(x) < 0$ in $B_r(x_l)$. Consider

$$\begin{cases} -\Delta v_1^{\epsilon} = -\left(4\pi - \epsilon\right) h_1 e^{u_1^{\epsilon}} & \text{in } B_r(x_l), \\ v_1^{\epsilon} = 0 & \text{on } \partial B_r(x_l). \end{cases}$$

218

We define $v_2^{\epsilon} = u_2^{\epsilon} - \overline{u_2^{\epsilon}} - v_1^{\epsilon}$. Then $-\Delta v_2^{\epsilon} = -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 + (4\pi - \epsilon) + 2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_2 h_2 e^{u_2^{\epsilon}} \le -2\rho_$ $(4\pi - \epsilon)$. By Theorem 8.17 in [8] (or Theorem 4.1 in [7]) and Lemma 2.2, we have

$$\begin{split} \sup_{B_{r/2}(x_l)} v_2^{\epsilon} &\leq C \left(\| (v_2^{\epsilon})^+ \|_{L^s(B_r(x_l))} + C \right) \\ &\leq C \left(\| u_2^{\epsilon} - \overline{u_2^{\epsilon}} \|_{L^s(M)} + \| v_1^{\epsilon} \|_{L^s(B_r(x_l))} + C \right) \\ &\leq C \left(\| \nabla u_2^{\epsilon} \|_{L^s(M)} + \| v_1^{\epsilon} \|_{L^s(B_r(x_l))} + C \right) \\ &\leq C \left(\| v_1^{\epsilon} \|_{L^s(B_r(x_l))} + C \right). \end{split}$$

Notice that $h_1\mu_1=\delta_{x_1}$ and $x_l\neq x_1$, one has $\int_{B_r(x_l)}|h_1|e^{u_1^\epsilon}\to 0$ as $\epsilon\to 0$ for sufficiently small r. It then follows from Theorem 1 in [1] that $\int_{B_r(x)} e^{t|v_1^{\epsilon}|} \le C$ for some t > 1, which yields that

$$||v_1^{\epsilon}||_{L^s(B_r(x_l))} \leq C.$$

Then we have

$$\sup_{B_{r/2}(x_l)} v_2^{\epsilon} \le C.$$

Note that

$$\int_{B_{r/2}(x_l)} e^{su_2^{\epsilon}} = \int_{B_{r/2}(x_l)} e^{s\overline{u_2^{\epsilon}}} e^{sv_2^{\epsilon}} e^{sv_1^{\epsilon}}$$

$$\leq C \int_{B_{r/2}(x_l)} e^{s|v_1^{\epsilon}|}$$

$$\leq C.$$

Therefore, one has by Hölder's inequality that

$$\mu_2(\{x_l\}) = \lim_{r \to 0} \lim_{\epsilon \to 0} \int_{B_{r/2}(x_l)} e^{u_2^{\epsilon}} \le \lim_{r \to 0} \lim_{\epsilon \to 0} \left(\int_{B_{r/2}(x_l)} e^{su_2^{\epsilon}} \right)^{1/s} \left(\operatorname{vol} B_{r/2}(x_l) \right)^{1-1/s} = 0,$$

this is a contradiction with $\mu_2(\{x_l\}) > 0$. Hence, we obtain $S = \{x_1\}$.

Case 2 $\gamma_2(\{x_1\}) < 4\pi$ (We shall divide this case into three subcases.)

Case 2.1 $h_2(x_1)\mu_2(x_1) = 0$.

Choosing r > 0 sufficiently small such that $h_1(x) > 0$ in $B_r(x_1)$. Let z_1^{ϵ} be the solution of

$$\begin{cases} -\Delta z_1^{\epsilon} = 2\rho_2 h_2 e^{u_2^{\epsilon}} & \text{in } B_r(x_1), \\ z_1^{\epsilon} = 0 & \text{on } \partial B_r(x_1). \end{cases}$$

Let $z_2^{\epsilon} = u_2^{\epsilon} - \overline{u_2^{\epsilon}} - z_1^{\epsilon}$ so that $-\Delta z_2^{\epsilon} \leq -2\rho_2 + (4\pi - \epsilon)$. By Theorem 8.17 in [8] (or Theorem 4.1 in [7]) and Lemma 2.2, we have

$$\sup_{B_{r/2}(x_1)} z_2^{\epsilon} \leq C \left(\| (z_2^{\epsilon})^+ \|_{L^s(B_r(x_1))} + C \right) \\
\leq C \left(\| u_2^{\epsilon} - \overline{u_2^{\epsilon}} \|_{L^s(M)} + \| z_1^{\epsilon} \|_{L^s(B_r(x_1))} + C \right) \\
\leq C \left(\| \nabla u_2^{\epsilon} \|_{L^s(M)} + \| z_1^{\epsilon} \|_{L^s(B_r(x_1))} + C \right) \\
\leq C \left(\| z_1^{\epsilon} \|_{L^s(B_r(x_1))} + C \right).$$

218 Page 10 of 22 L. Sun, X. Zhu

Since $\int_{B_r(x_1)} |h_2| e^{u_2^{\epsilon}} \to 0$ as $\epsilon \to 0$ for sufficiently small r, it follows from Theorem 1 in [1] that $\int_{B_r(x_1)} e^{t|z_1^{\epsilon}|} \le C$ for some t > 1, which yields that

$$||z_1^{\epsilon}||_{L^s(B_r(x_1))} \leq C.$$

Then we have

$$\sup_{B_{r/2}(x_1)} z_2^{\epsilon} \le C.$$

Note that

$$\begin{split} \int_{B_{r/2}(x_1)} e^{tu_2^\epsilon} &= \int_{B_{r/2}(x_1)} e^{t\overline{u_2^\epsilon}} e^{tz_2^\epsilon} e^{tz_1^\epsilon} \\ &\leq C \int_{B_{r/2}(x_1)} e^{t|z_1^\epsilon|} \\ &< C. \end{split}$$

By the standard elliptic estimates, we have

$$||z_1^{\epsilon}||_{L^{\infty}(B_{r/4}(x_1))} \leq C.$$

Therefore, we obtain that

$$u_2^{\epsilon} - \overline{u_2^{\epsilon}} \le C \text{ in } B_{r/4}(x_1).$$

Case 2.2 $h_2(x_1)\mu_2(x_1) > 0$.

Consider the equation

$$\begin{cases} -\Delta v_1^{\epsilon} = 2\rho_2 h_2 e^{u_2^{\epsilon}} - (4\pi - \epsilon) h_1 e^{u_1^{\epsilon}} := f_{\epsilon} & \text{in } B_{\delta}(x_1), \\ v_1^{\epsilon} = 0 & \text{on } \partial B_{\delta}(x_1). \end{cases}$$

Define $v_2^{\epsilon} = u_2^{\epsilon} - \overline{u_2^{\epsilon}} - v_1^{\epsilon}$, then $-\Delta v_2^{\epsilon} = (4\pi - \epsilon) - 2\rho_2$ in $B_{\delta}(x_1)$. By Theorem 4.1 in [7] and Lemma 2.2, we have

$$\begin{split} \sup_{B_{\delta/2}(x_1)} |v_2^{\epsilon}| &\leq C \left(\|v_2^{\epsilon}\|_{L^1(B_{\delta}(x_1))} + C \right) \\ &\leq C \left(\|u_2^{\epsilon} - \overline{u_2^{\epsilon}}\|_{L^1(M)} + \|v_1^{\epsilon}\|_{L^1(B_{\delta}(x_1))} + C \right) \\ &\leq C \left(\|\nabla u_2^{\epsilon}\|_{L^s(M)} + \|v_1^{\epsilon}\|_{L^1(B_{\delta}(x_1))} + C \right) \\ &\leq C \left(\|v_1^{\epsilon}\|_{L^1(B_{\delta}(x_1))} + C \right). \end{split}$$

Since in this case $||f_{\epsilon}||_{L^{1}(B_{\delta}(x_{1}))} < 4\pi$ for sufficiently small $\epsilon > 0$, it then follows from Theorem 1 in [1] that $e^{s|v_{1}^{\epsilon}|}$ is bounded in $B_{\delta}(x_{1})$ for some s > 1, which yields that

$$||v_1^{\epsilon}||_{L^1(B_{\delta}(x_1))} \le C.$$

Then we have

$$\sup_{B_{\delta/2}(x_1)} v_2^{\epsilon} \le C.$$

Note that

$$\int_{B_{\delta/2}(x_1)} e^{su_2^{\epsilon}} = \int_{B_{\delta/2}(x_1)} e^{s\overline{u_2^{\epsilon}}} e^{sv_2^{\epsilon}} e^{sv_1^{\epsilon}}$$

$$\leq C \int_{B_{\delta/2}(x_1)} e^{s|v_1^{\epsilon}|}$$

$$\leq C.$$
(2.6)

Therefore, one has by Hölder's inequality that

$$\mu_2(\{x_1\}) = \lim_{\delta \to 0} \lim_{\epsilon \to 0} \int_{B_{r/2}(x_l)} e^{u_2^{\epsilon}} \le \lim_{\delta \to 0} \lim_{\epsilon \to 0} \left(\int_{B_{r/2}(x_l)} e^{su_2^{\epsilon}} \right)^{1/s} \left(\operatorname{vol} B_{r/2}(x_l) \right)^{1-1/s} = 0,$$

this is a contradiction with $\mu_2(\{x_1\}) > 0$. This shows that this subcase will not happen.

Case 2.3 $h_2(x_1)\mu_2(x_1) < 0$.

Since $S = \{x_1\}$, it follows by (2.3) that u_2^{ϵ} is locally uniformly bounded in $M \setminus \{x_1\}$. But in this subcase, we have $\mu_2(\{x_1\}) > 0$, then $\max_{B_r(x_1)} u_2^{\epsilon} = \max_M u_2^{\epsilon} \to +\infty$ as $\epsilon \to 0$. We assume $u_2^{\epsilon}(x_2^{\epsilon}) = \max_{B_r(x_1)} u_2^{\epsilon}$, it is obvious that $x_2^{\epsilon} \to x_1$ as $\epsilon \to 0$. At the maximum point x_2^{ϵ} , we have

$$-\Delta u_2^{\epsilon}(x_2^{\epsilon}) = 2\rho_2(h_2(x_2^{\epsilon})e^{u_2^{\epsilon}(x_2^{\epsilon})} - 1) - (4\pi - \epsilon)(h_1(x_2^{\epsilon})e^{u_1^{\epsilon}(x_2^{\epsilon})} - 1) < 0.$$

This is a contradiction. Therefore, this subcase will not happen either.

Concluding all the cases above, we finish the proof.

Since $S = \{x_1\}$ and $h_1\mu_1 = \delta_{x_1}$, we have $x_1^{\epsilon} \to x_1$ as $\epsilon \to 0$ by (2.3). Let $(\Omega; (x^1, x^2))$ be an isothermal coordinate system around x_1 and we assume the metric to be

$$g|_{\Omega} = e^{\phi} \left(\left(dx^1 \right)^2 + \left(dx^2 \right)^2 \right), \ \phi(0) = 0.$$

We have

$$u_1^{\epsilon}(x_1^{\epsilon} + r_1^{\epsilon}x) - m_1^{\epsilon} \to -2\log(1 + \pi h_1(x_1)|x|^2),$$
 (2.7)

where $r_1^{\epsilon}=e^{-m_1^{\epsilon}/2}$. Recalling that for any $s\in(1,2)$, we have $u_1^{\epsilon}-\overline{u_1^{\epsilon}}\to G_1$ weakly in $W^{1,s}(M)$ and strongly in $C^2_{\mathrm{loc}}(M\setminus\{x_1\})$, $u_2^{\epsilon}\to G_2$ weakly in $W^{1,s}(M)$ and strongly in $C^2_{\mathrm{loc}}(M\setminus\{x_1\})$, where $G_1=G_1(x,x_1)$ and $G_2=G_2(x,x_1)$ are defined in (1.9).

3 The lower bound for $J_{4\pi,\rho_2}$

In this section, we shall give the first step in proving Theorem 1.3: deriving an explicit lower bound of $J_{4\pi,\rho_2}$ when $(u_1^{\epsilon}, u_2^{\epsilon})$ blows up.

Define
$$v_2^{\epsilon} = \frac{1}{3}(2u_2^{\epsilon} + u_1^{\epsilon}) - \frac{1}{3}(2\overline{u_2^{\epsilon}} + \overline{u_1^{\epsilon}})$$
, we have

$$\begin{cases} -\Delta v_2^{\epsilon} = (4\pi - \epsilon) \left(h_2 e^{u_2^{\epsilon}} - 1 \right), \\ \int_M v_2^{\epsilon} = 0. \end{cases}$$

218 Page 12 of 22 L. Sun, X. Zhu

Notice that $u_2^{\epsilon} \leq C$, it follows from the standard elliptic estimates that $\|v_2^{\epsilon}\|_{C^1(M)} \leq C$. Then we obtain that

$$\begin{split} \frac{1}{3} \int_{B_{\delta}(\boldsymbol{x}_{1}^{\epsilon})} \left(\left| \nabla \boldsymbol{u}_{1}^{\epsilon} \right|^{2} + \nabla \boldsymbol{u}_{1}^{\epsilon} \nabla \boldsymbol{u}_{2}^{\epsilon} + \left| \nabla \boldsymbol{u}_{2}^{\epsilon} \right|^{2} \right) = & \frac{1}{4} \int_{B_{\delta}(\boldsymbol{x}_{1}^{\epsilon})} \left| \nabla \boldsymbol{u}_{1}^{\epsilon} \right|^{2} + \frac{3}{4} \int_{B_{\delta}(\boldsymbol{x}_{1}^{\epsilon})} \left| \nabla \boldsymbol{v}_{2}^{\epsilon} \right|^{2} \\ = & \frac{1}{4} \int_{B_{\delta}(\boldsymbol{x}_{1}^{\epsilon})} \left| \nabla \boldsymbol{u}_{1}^{\epsilon} \right|^{2} + O(\delta^{2}). \end{split}$$

Denote $w(x) = -2\log(1 + \pi h_1(x_1)|x|^2)$, we have by (2.7) that

$$\begin{split} \frac{1}{4} \int_{B_{\delta}(x_1^{\epsilon})} \left| \nabla u_1^{\epsilon} \right|^2 &= \frac{1}{4} \int_{B_L} \left| \nabla w \right|^2 \\ &+ \frac{1}{4} \int_{B_{\delta}(x_1^{\epsilon}) \backslash B_{Lr_{\epsilon}^{\epsilon}}(x_1^{\epsilon})} \left| \nabla u_1^{\epsilon} \right|^2 + o_{\epsilon}(1) + O(\delta^2). \end{split}$$

To estimate $\int_{B_{\delta}(x_1^{\epsilon})\setminus B_{Lr^{\epsilon}}(x_1^{\epsilon})} \left| \nabla u_1^{\epsilon} \right|^2$, we shall follow [14] closely. Let

$$a_1^{\epsilon} = \inf_{\partial B_{Lr_1^{\epsilon}}(x_1^{\epsilon})} u_1^{\epsilon}, \quad b_1^{\epsilon} = \sup_{\partial B_{Lr_1^{\epsilon}}(x_1^{\epsilon})} u_1^{\epsilon}.$$

We set $a_1^{\epsilon} - b_1^{\epsilon} = m_1^{\epsilon} - \overline{u_1^{\epsilon}} + d_1^{\epsilon}$. Then

$$d_1^{\epsilon} = w(L) - \sup_{\partial B_{\delta}(x_1)} G_1 + o_{\epsilon}(1).$$

Define $f_1^{\epsilon} = \max\{\min\{u_1^{\epsilon}, a_1^{\epsilon}\}, b_1^{\epsilon}\}$. We have

$$\begin{split} \int_{B_{\delta}(\boldsymbol{x}_{1}^{\epsilon})\backslash B_{Lr_{1}^{\epsilon}}(\boldsymbol{x}_{1}^{\epsilon})} \left| \nabla u_{1}^{\epsilon} \right|^{2} &\geq \int_{B_{\delta}(\boldsymbol{x}_{1}^{\epsilon})\backslash B_{Lr_{1}^{\epsilon}}(\boldsymbol{x}_{1}^{\epsilon})} \left| \nabla f_{1}^{\epsilon} \right|^{2} \\ &= \int_{B_{\delta}(\boldsymbol{x}_{1}^{\epsilon})\backslash B_{Lr_{1}^{\epsilon}}(\boldsymbol{x}_{1}^{\epsilon})} \left| \nabla_{\mathbb{R}^{2}} f_{1}^{\epsilon} \right|^{2} \\ &\geq \inf_{\boldsymbol{\Psi} \mid \partial B_{Lr_{1}^{\epsilon}}(\boldsymbol{\theta}) = a_{1}^{\epsilon}, \boldsymbol{\Psi} \mid \partial B_{\delta}(\boldsymbol{\theta}) = b_{1}^{\epsilon}} \int_{B_{\delta}(\boldsymbol{\theta})\backslash B_{Lr_{1}^{\epsilon}}(\boldsymbol{\theta})} \left| \nabla_{\mathbb{R}^{2}} \boldsymbol{\Psi} \right|^{2}. \end{split}$$

By the Dirichlet's principle, we know

$$\inf_{\Psi|_{\partial B_{Lr_{\epsilon}^{\epsilon}}(0)}=a_{1}^{\epsilon},\Psi|_{\partial B_{\delta}(0)}=b_{1}^{\epsilon}}\int_{B_{\delta}(0)\backslash B_{Lr_{\epsilon}^{\epsilon}}(0)}\left|\nabla_{\mathbb{R}^{2}}\Psi\right|^{2}$$

is uniquely attained by the following harmonic function

$$\left\{ \begin{array}{l} -\Delta_{\mathbb{R}^2} \phi = 0, \\ \phi|_{\partial B_{Lr_1^{\epsilon}}(0)} = a_1^{\epsilon}, \phi|_{\partial B_{\delta}(0)} = b_1^{\epsilon}. \end{array} \right.$$

Thus,

$$\phi = \frac{a_1^\epsilon - b_1^\epsilon}{-\log L r_1^\epsilon + \log \delta} \log r - \frac{a_1^\epsilon \log \delta - b_1^\epsilon \log L r_1^\epsilon}{-\log L r_1^\epsilon + \log \delta},$$

and then

$$\int_{B_{\delta}(0)\setminus B_{Lr_1^{\epsilon}}(0)} |\nabla_{\mathbb{R}^2} \phi|^2 = \frac{4\pi (a_1^{\epsilon} - b_1^{\epsilon})^2}{-\log(Lr_1^{\epsilon})^2 + \log \delta^2}.$$

Concluding, we have

$$\int_{B_{\delta}(x_1^{\epsilon}) \backslash B_{Lr^{\epsilon}}(x_1^{\epsilon})} \left| \nabla u_1^{\epsilon} \right|^2 \geq \frac{4\pi (a_1^{\epsilon} - b_1^{\epsilon})^2}{-\log(Lr_1^{\epsilon})^2 + \log \delta^2}.$$

Since $-\log(r_1^{\epsilon})^2 = m_1^{\epsilon}$, we obtain

$$\int_{B_{\delta}(x_1^{\epsilon})\setminus B_{Lr_{\epsilon}^{\epsilon}}(x_1^{\epsilon})} \left|\nabla u_1^{\epsilon}\right|^2 \ge 4\pi \frac{(m_1^{\epsilon} - \overline{u_1^{\epsilon}} + d_1^{\epsilon})^2}{m_1^{\epsilon} - \log L^2 + \log \delta^2}.$$
(3.1)

By (2.5), one has

$$\frac{1}{4} \int_{B_{\delta}(x_{1}^{\epsilon}) \setminus B_{Lr^{\epsilon}}(x_{1}^{\epsilon})} \left| \nabla u_{1}^{\epsilon} \right|^{2} + (4\pi - \epsilon) \overline{u_{1}^{\epsilon}} \leq \frac{1}{4} \int_{M} \left| \nabla u_{1}^{\epsilon} \right|^{2} + (4\pi - \epsilon) \overline{u_{1}^{\epsilon}} \leq C. \tag{3.2}$$

It follows form (3.1) and (3.2) that

$$\pi \frac{(m_1^{\epsilon} - \overline{u_1^{\epsilon}} + d_1^{\epsilon})^2}{m_1^{\epsilon} - \log L^2 + \log \delta^2} + (4\pi - \epsilon) \overline{u_1^{\epsilon}} \le C.$$
(3.3)

Recalling that $\overline{u_1^\epsilon} \to -\infty$ and $m_1^\epsilon \to +\infty$, we get from (3.3)

$$\frac{\overline{u_1^{\epsilon}}}{m_1^{\epsilon}} = -1 + o_{\epsilon}(1) \tag{3.4}$$

by dividing both sides by m_1^{ϵ} and letting ϵ tend to 0. Taking (3.4) into (3.1), we have

$$\int_{B_{\delta}(x_1^{\epsilon})\setminus B_{Lr_1^{\epsilon}}(x_1^{\epsilon})} \left|\nabla u_1^{\epsilon}\right|^2 \ge 4\pi \frac{(m_1^{\epsilon} - \overline{u_1^{\epsilon}})^2}{m_1^{\epsilon}} + 16\pi \left(d_1^{\epsilon} + \log L^2 - \log \delta^2 + o_{\epsilon}(1)\right).$$

Then

$$\frac{1}{3} \int_{B_{\delta}(x_{1}^{\epsilon})} \left(\left| \nabla u_{1}^{\epsilon} \right|^{2} + \left| \nabla u_{1}^{\epsilon} \nabla u_{2}^{\epsilon} + \left| \nabla u_{2}^{\epsilon} \right|^{2} \right) + (4\pi - \epsilon) \overline{u_{1}^{\epsilon}} + \rho_{2} \overline{u_{2}^{\epsilon}} \\
\geq -4\pi - 4\pi \log(\pi h_{1}(x_{1})) - 4\pi A_{1}(x_{1}) + 8\pi \log \delta \\
+ \rho_{2} \int_{M} G_{2} + o_{\epsilon}(1) + o_{L}(1) + o_{\delta}(1).$$
(3.5)

Using (1.9) and (1.10), one has

$$\frac{1}{3} \int_{M \setminus B_{\delta}(x_{1}^{\epsilon})} \left(\left| \nabla u_{1}^{\epsilon} \right|^{2} + \left| \nabla u_{1}^{\epsilon} \nabla u_{2}^{\epsilon} + \left| \nabla u_{2}^{\epsilon} \right|^{2} \right) \\
= \frac{\rho_{2}}{2} \int_{M} G_{2} \left(h_{2} e^{G_{2}} - 1 \right) - 8\pi \log \delta + 2\pi A_{1}(x_{1}) + o_{\epsilon}(1) + o_{\delta}(1). \tag{3.6}$$

Combining (3.5) and (3.6), we have

$$J_{4\pi-\epsilon,\rho_2}\left(u_1^{\epsilon},u_2^{\epsilon}\right) \ge -4\pi - 4\pi\log(\pi h_1(x_1)) - 2\pi A_1(x_1) + \frac{\rho_2}{2} \int_M G_2(h_2 e^{G_2} + 1) + o_{\epsilon}(1) + o_{\delta}(1).$$

218 Page 14 of 22 L. Sun, X. Zhu

By letting $\epsilon \to 0$ first, then $L \to +\infty$ and then $\delta \to 0$, we obtain finally that

$$\inf_{u \in \mathcal{H}} J_{4\pi, \rho_2}(u) \ge -4\pi - 4\pi \log(\pi h_1(x_1)) - 2\pi A_1(x_1) + \frac{\rho_2}{2} \int_M G_2(h_2 e^{G_2} + 1) \\
\ge -4\pi - 4\pi \log \pi - 2\pi \max_{x \in M_+} (2\log h_1(x) + A_1(x)) \\
+ \frac{\rho_2}{2} \int_M G_2(h_2 e^{G_2} + 1).$$
(3.7)

4 Completion of the proof of Theorem 1.3

In this section, we first outline the rest proof, then construct the blowup sequences like in [14] and present our calculations.

4.1 Outline of the rest proof

Let ϕ_1^{ϵ} and ϕ_2^{ϵ} be defined as [14] (see section 6). If the condition (1.11) is satisfied on M_+ , we can follow [14] step by step to show that for sufficiently small ϵ

$$\begin{split} J_{4\pi,\rho_2}(\phi_1^\epsilon,\phi_2^\epsilon) < &-4\pi - 4\pi \log \pi - 2\pi \max_{x \in M_+} (2\log h_1(x) + A_1(x)) \\ &+ \frac{\rho_2}{2} \int_M G_2(h_2 e^{G_2} + 1). \end{split}$$

It is easy to check that $\int_M h_1 e^{\phi_1^\epsilon}>0$ and $\int_M h_2 e^{\phi_2^\epsilon}>0$, we define

$$\widetilde{\phi_i^{\epsilon}} = \phi_i^{\epsilon} - \log \int_M h_i e^{\phi_i^{\epsilon}}, \quad i = 1, 2.$$

Then $(\phi_1^{\epsilon}, \phi_2^{\epsilon}) \in \mathcal{H}$. Since $J_{4\pi, \rho_2}(u_1 + c_1, u_2 + c_2) = J_{4\pi, \rho_2}(u_1, u_2)$ for any $c_1, c_2 \in \mathbb{R}$, we have for sufficiently small ϵ that

$$\inf_{u \in \mathcal{H}} J_{4\pi, \rho_2}(u) \leq J_{4\pi, \rho_2}(\widetilde{\phi}_1^{\epsilon}, \widetilde{\phi}_2^{\epsilon}) = J_{4\pi, \rho_2}(\phi_1^{\epsilon}, \phi_2^{\epsilon})
< -4\pi - 4\pi \log \pi - 2\pi \max_{x \in M_+} (2 \log h_1(x) + A_1(x))
+ \frac{\rho_2}{2} \int_M G_2(h_2 e^{G_2} + 1).$$
(4.1)

Combining (3.7) and (4.1), one knows that $(u_1^{\epsilon}, u_2^{\epsilon})$ does not blow up. So $(u_1^{\epsilon}, u_2^{\epsilon})$ converges to some (u_1^0, u_2^0) which minimizes $J_{4\pi, \rho_2}$ in \mathcal{H} and solves (1.7). The smooth of u_1^0 and u_2^0 follows from the standard elliptic estimates. Finally, we complete the proof of Theorem 1.3.

4.2 Test function

Suppose that $2 \log h_1(p) + A_1(p) = \max_{x \in M_+} (2 \log h_1(x) + A_1(x))$. Let $(\Omega; (x^1, x^2))$ be an isothermal coordinate system around p and we assume the metric to be

$$g|_{\Omega} = e^{\phi} \left(\left(dx^1 \right)^2 + \left(dx^2 \right)^2 \right),$$

and

$$\phi = b_1(p)x^1 + b_2(p)x^2 + c_1(p)\left(x^1\right)^2 + c_2(p)\left(x^2\right)^2 + c_{12}(p)x^1x^2 + O(r^3),$$

where $r(x^1, x^2) = \sqrt{(x^1)^2 + (x^2)^2}$. Moreover we assume near p that

$$G_i = a_i \log r + A_i(p) + \lambda_i(p)x^1 + \nu_i(p)x^2 + \alpha_i(p)\left(x^1\right)^2 + \beta_i(p)\left(x^2\right)^2 + \xi_i(p)x^1x^2 + \ell_i(x^1, x^2) + O(r^4), i = 1, 2,$$

where $a_1 = -4$, $a_2 = 2$. It is well known that

$$K(p) = -(c_1(p) + c_2(p)),$$

 $|\nabla u|^2 dV_g = |\nabla u|^2 dx^1 dx^2,$

and

$$\frac{\partial u}{\partial n}dS_g = \frac{\partial u}{\partial r}rd\theta.$$

For α_i and β_i , we have the following lemma:

Lemma 4.1 We have

$$\alpha_1(p) + \beta_1(p) = 4\pi - \frac{\rho_2}{2}, \ \alpha_2(p) + \beta_2(p) = \rho_2 - 2\pi.$$

Proof We have near p that

$$\begin{split} 2\alpha_1(p) + 2\beta_1(p) + O(r) &= \Delta_{\mathbb{R}^2} G_1 = e^{-\phi} \left[8\pi + \rho_2 \left(h_2 e^{G_2} - 1 \right) \right], \\ 2\alpha_2(p) + 2\beta_2(p) + O(r) &= \Delta_{\mathbb{R}^2} G_2 = e^{-\phi} \left[-2\rho_2 \left(h_2 e^{G_2} - 1 \right) - 4\pi \right], \end{split}$$

then the lemma is proved since $e^{G_2} = O(r^2)$ near p.

We choose as in [14] that

$$\phi_1^{\epsilon} = \begin{cases} w(\frac{x}{\epsilon}) + \lambda_1(p)r\cos\theta + \nu_1(p)\sin\theta, & x \in B_{L\epsilon}(p), \\ G_1 - \eta H_1 + 4\log(L\epsilon) - 2\log\left(1 + \pi L^2\right) - A_1(p), & x \in B_{2L\epsilon}(p) \setminus B_{L\epsilon}(p), \\ G_1 + 4\log(L\epsilon) - 2\log\left(1 + \pi L^2\right) - A_1(p), & \text{otherwise} \end{cases}$$

and

$$\phi_2^{\epsilon} = \begin{cases} -\frac{w(\frac{x}{\epsilon}) + 2\log(1+\pi L^2)}{2} + 2\log(L\epsilon) \\ + \lambda_2(p)r\cos\theta + \nu_2(p)r\sin\theta + A_2(p), & x \in B_{L\epsilon}(p), \\ G_2 - \eta H_2, & x \in B_{2L\epsilon}(p) \setminus B_{L\epsilon}(p), \\ G_2, & \text{otherwise.} \end{cases}$$

Here,

$$H_i = G_i - a_i \log r - A_i(p) - \lambda_i(p)r \cos \theta - \nu_i(p)r \sin \theta, \quad i = 1, 2$$

and η is a cut-off function which equals 1 in $B_{L\epsilon}(p)$, equals 0 in $M \setminus B_{2L\epsilon}(p)$ and satisfies $|\nabla \eta| \leq \frac{C}{L\epsilon}$.

218 Page 16 of 22 L. Sun, X. Zhu

Using Lemma 5.2 in [14] and Lemma 4.1, we have

$$\begin{split} \int_{M} |\nabla \phi_{1}^{\epsilon}|^{2} &= \int_{B_{L\epsilon}(p)} |\nabla \phi_{1}^{\epsilon}|^{2} + \int_{M \backslash B_{L\epsilon}(p)} |\nabla G_{1}|^{2} \\ &- 2 \int_{M \backslash B_{L\epsilon}(p)} |\nabla G_{1}| \nabla (\eta H_{1}) + \int_{M \backslash B_{L\epsilon}(p)} |\nabla (\eta H_{1})|^{2} \\ &= \int_{B_{L}(0)} |\nabla_{\mathbb{R}^{2}} w|^{2} + \pi (\lambda_{1}^{2}(p) + \nu_{1}^{2}(p)) \left(L\epsilon\right)^{2} - 8\pi \left(4\pi - \frac{\rho_{2}}{2}\right) (L\epsilon)^{2} \\ &+ \int_{M \backslash B_{L\epsilon}(p)} |\nabla G_{1}|^{2} + O\left((L\epsilon)^{4}\right), \end{split}$$

$$\begin{split} \int_{M} |\nabla \phi_{2}^{\epsilon}|^{2} &= \int_{B_{L\epsilon}(p)} |\nabla \phi_{2}^{\epsilon}|^{2} + \int_{M \backslash B_{L\epsilon}(p)} |\nabla G_{2}|^{2} \\ &- 2 \int_{M \backslash B_{L\epsilon}(p)} |\nabla G_{2} \nabla (\eta H_{2}) + \int_{M \backslash B_{L\epsilon}(p)} |\nabla (\eta H_{2})|^{2} \\ &= \frac{1}{4} \int_{B_{L}(0)} |\nabla_{\mathbb{R}^{2}} w|^{2} + \pi (\lambda_{2}^{2}(p) + \nu_{2}^{2}(p)) \left(L\epsilon\right)^{2} + 4\pi (\rho_{2} - 2\pi) \left(L\epsilon\right)^{2} \\ &+ \int_{M \backslash B_{L\epsilon}(p)} |\nabla G_{2}|^{2} + O\left((L\epsilon)^{4}\right) \end{split}$$

and

$$\begin{split} \int_{M} \nabla \phi_{1}^{\epsilon} \nabla \phi_{2}^{\epsilon} &= \int_{B_{L\epsilon}(p)} \nabla \phi_{1}^{\epsilon} \nabla \phi_{2}^{\epsilon} + \int_{M \backslash B_{L\epsilon}(p)} \nabla G_{1} \nabla G_{2} \\ &- \int_{M \backslash B_{L\epsilon}(p)} (\nabla G_{1} \nabla (\eta H_{2}) + \nabla G_{2} \nabla (\eta H_{1})) + \int_{M \backslash B_{L\epsilon}(p)} \nabla (\eta H_{1}) \nabla (\eta H_{2}) \\ &= -\frac{1}{2} \int_{B_{L}(0)} |\nabla_{\mathbb{R}^{2}} w|^{2} + \pi (\lambda_{1}(p) \lambda_{2}(p) + \nu_{1}(p) \nu_{2}(p)) \left(L\epsilon\right)^{2} \\ &- 4\pi (\rho_{2} - 2\pi) \left(L\epsilon\right)^{2} + 2\pi \left(4\pi - \frac{\rho_{2}}{2}\right) (L\epsilon)^{2} \\ &+ \int_{M \backslash B_{L\epsilon}(p)} \nabla G_{1} \nabla G_{2} + O\left((L\epsilon)^{4}\right). \end{split}$$

Noticing that

$$\begin{split} &\int_{M \setminus B_{L\epsilon}(p)} \left(|\nabla G_1|^2 + |\nabla G_2|^2 + \nabla G_1 \nabla G_2 \right) \\ &= \int_{M \setminus B_{L\epsilon}(p)} \left(|\nabla G_1|^2 + |\nabla G_2|^2 + \frac{\nabla G_1 \nabla G_2 + \nabla G_2 \nabla G_1}{2} \right) \\ &= 6\pi \int_{B_{L\epsilon}(p)} G_1 + \frac{3}{2} \rho_2 \int_M G_2 \left(h_2 e^{G_2} - 1 \right) + \frac{3}{2} \rho_2 \int_{B_{L\epsilon}(p)} G_2 \\ &- \int_{\partial B_{L\epsilon}(p)} \left(G_1 \frac{\partial G_1}{\partial n} + G_2 \frac{\partial G_2}{\partial n} + \frac{G_1 \frac{\partial G_2}{\partial n} + G_2 \frac{\partial G_1}{\partial n}}{2} \right) \\ &+ O\left(\left(L\epsilon \right)^4 \log \left(L\epsilon \right) \right). \end{split}$$

Calculating directly, we have

$$\int_{B_{L\epsilon}(p)} G_1 = -4\pi (L\epsilon)^2 \log (L\epsilon) + 2\pi (L\epsilon)^2 + \pi A_1(p) (L\epsilon)^2 + O\left((L\epsilon)^4 \log (L\epsilon)\right)$$

and

$$\int_{B_{L\epsilon}(p)} G_2 = 2\pi (L\epsilon)^2 \log (L\epsilon) - \pi (L\epsilon)^2 + \pi A_2(p) (L\epsilon)^2 + O\left((L\epsilon)^4 \log (L\epsilon)\right).$$

For the boundary terms, we use Lemma 5.2 in [14] and Lemma 4.1 to calculate. Precisely, we have

$$\begin{split} \int_{\partial B_{L\epsilon}(p)} G_1 \frac{\partial G_1}{\partial n} &= 32\pi \log (L\epsilon) - 4\pi \left(4\pi - \frac{\rho_2}{2} \right) (L\epsilon)^2 + \pi (\lambda_1^2(p) + \nu_1^2(p)) (L\epsilon)^2 \\ &- 8\pi A_1(p) + 2\pi \left(4\pi - \frac{\rho_2}{2} \right) A_1(p) (L\epsilon)^2 \\ &- 8\pi \left(4\pi - \frac{\rho_2}{2} \right) (L\epsilon)^2 \log (L\epsilon) \\ &+ O \left((L\epsilon)^4 \log (L\epsilon) \right), \\ \int_{\partial B_{L\epsilon}(p)} G_2 \frac{\partial G_2}{\partial n} &= 8\pi \log (L\epsilon) + 2\pi (\rho_2 - 2\pi) (L\epsilon)^2 + \pi (\lambda_2^2(p) + \nu_2^2(p)) (L\epsilon)^2 \\ &+ 4\pi A_2(p) + 4\pi (\rho_2 - 2\pi) A_2(p) (L\epsilon)^2 \\ &+ 4\pi (\rho_2 - 2\pi) (L\epsilon)^2 \log (L\epsilon) \\ &+ O \left((L\epsilon)^4 \log (L\epsilon) \right), \\ \int_{\partial B_{L\epsilon}(p)} G_1 \frac{\partial G_2}{\partial n} &= -16\pi \log (L\epsilon) - 4\pi (\rho_2 - 2\pi) (L\epsilon)^2 \\ &+ \pi (\lambda_1(p)\lambda_2(p) + \nu_1(p)\nu_2(p)) (L\epsilon)^2 \\ &- 8\pi A_2(p) + 2\pi \left(4\pi - \frac{\rho_2}{2} \right) A_2(p) (L\epsilon)^2 \\ &+ 4\pi (\rho_2 - 2\pi) (L\epsilon)^2 \log (L\epsilon) \\ &+ O \left((L\epsilon)^4 \log (L\epsilon) \right), \\ \int_{\partial B_{L\epsilon}(p)} G_2 \frac{\partial G_1}{\partial n} &= -16\pi \log (L\epsilon) + 2\pi \left(4\pi - \frac{\rho_2}{2} \right) (L\epsilon)^2 \\ &+ \pi (\lambda_2(p)\lambda_1(p) + \nu_2(p)\nu_1(p)) (L\epsilon)^2 \\ &+ 4\pi A_1(p) + 2\pi (\rho_2 - 2\pi) A_1(p) (L\epsilon)^2 \\ &- 8\pi (\rho_2 - 2\pi) (L\epsilon)^2 \log (L\epsilon) \\ &+ O \left((L\epsilon)^4 \log (L\epsilon) \right). \end{split}$$

Therefore, we obtain that

$$\frac{1}{3} \int_{M} \left(|\nabla \phi_{1}^{\epsilon}|^{2} + |\nabla \phi_{2}^{\epsilon}|^{2} + \nabla \phi_{1}^{\epsilon} \nabla \phi_{2}^{\epsilon} \right)
= 4\pi \log \left(1 + \pi L^{2} \right) - \frac{4\pi^{2} L^{2}}{1 + \pi L^{2}} - 8\pi \log \left(L\epsilon \right) + 2\pi A_{1}(p)
+ \frac{1}{2} \rho_{2} \int_{M} G_{2} \left(h_{2} e^{G_{2}} - 1 \right) + O\left((L\epsilon)^{4} \log \left(L\epsilon \right) \right).$$
(4.2)

218 Page 18 of 22 L. Sun, X. Zhu

Do calculations, we have

$$\int_{M} \phi_{1}^{\epsilon} = \epsilon^{2} \int_{B_{L}(0)} w e^{\phi(\epsilon x^{1}, \epsilon x^{2})} + 4 \log(L\epsilon) + 2\pi (L\epsilon)^{2} \log(1 + \pi L^{2})$$

$$- 2\pi (L\epsilon)^{2} - A_{1}(p) - 2 \log(1 + \pi L^{2}) + O((L\epsilon)^{4} \log(L\epsilon))$$
(4.3)

and

$$\int_{M} \phi_{2}^{\epsilon} = -\frac{\epsilon^{2}}{2} \int_{B_{L}(0)} w e^{\phi(\epsilon x^{1}, \epsilon x^{2})} - \pi (L\epsilon)^{2} \log \left(1 + \pi L^{2}\right)$$

$$+ \pi (L\epsilon)^{2} + \int_{M} G_{2} + O\left((L\epsilon)^{4} \log (L\epsilon)\right). \tag{4.4}$$

Since

$$\int_{B_L(0)} w e^{\phi(\epsilon x^1, \epsilon x^2)} = 2\pi L^2 - 2\log(1 + \pi L^2) - 2\pi L^2 \log(1 + \pi L^2) + O(L^2 \epsilon^2 \log L),$$

we obtain that by instituting this into (4.3) and (4.4) respectively

$$\int_{M} \phi_{1}^{\epsilon} = 4 \log (L\epsilon) - A_{1}(p) - 2 \log \left(1 + \pi L^{2}\right)$$
$$- 2\epsilon^{2} \log \left(1 + \pi L^{2}\right) + O\left((L\epsilon)^{4} \log (L\epsilon)\right) \tag{4.5}$$

and

$$\int_{M} \phi_{2}^{\epsilon} = \epsilon^{2} \log \left(1 + \pi L^{2} \right) + \int_{M} G_{2} + O\left((L\epsilon)^{4} \log \left(L\epsilon \right) \right). \tag{4.6}$$

Denoting $\mathcal{M} = \frac{1}{\pi} \left(-\frac{K(p)}{2} + \frac{(b_1(p) + \lambda_1(p))^2 + (b_2(p) + \nu_1(p))^2}{4} \right)$ and using $\alpha_1(p) + \beta_1(p) = 4\pi - \frac{\rho_2}{2}$, we have

$$\int_{B_{L\epsilon}(p)} e^{\phi_1^{\epsilon}} = \epsilon^2 \left(1 - \frac{1}{1 + \pi L^2} + \mathcal{M}\epsilon^2 \log\left(1 + \pi L^2\right) + O\left(\epsilon^2\right) + O\left(\epsilon^3 \log L\right) \right),\tag{4.7}$$

$$\int_{B_{\delta}(p)\backslash B_{L\epsilon}(p)} e^{\phi_1^{\epsilon}} = \epsilon^2 \left(\frac{\pi L^2}{\left(1 + \pi L^2\right)^2} - \left(\mathcal{M} + \frac{4\pi - \frac{\rho_2}{2}}{2\pi} \right) \epsilon^2 \log(L\epsilon)^2 + O\left(\epsilon^2\right) + O\left(\frac{1}{L^4}\right) \right), \quad (4.8)$$

and

$$\int_{M \setminus R_{2}(p)} e^{\phi_{1}^{\epsilon}} = O\left(\epsilon^{4}\right). \tag{4.9}$$

By combining (4.7), (4.8) and (4.9), one has

$$\int_{M} e^{\phi_{1}^{\epsilon}} = \epsilon^{2} \left(1 + \mathcal{M}\epsilon^{2} \log \left(1 + \pi L^{2} \right) - \left(\mathcal{M} + \frac{4\pi - \frac{\rho_{2}}{2}}{2\pi} \right) \epsilon^{2} \log (L\epsilon)^{2} + O\left(\epsilon^{2}\right) + O\left(\epsilon^{2}\right) + O\left(\epsilon^{3} \log L\right) \right). \tag{4.10}$$

Suppose that in $B_{\delta}(p)$

$$h_1(x) - h_1(p) = k_1 r \cos \theta + k_2 r \sin \theta + k_3 r^2 \cos^2 \theta + 2k_4 \cos \theta \sin \theta + k_5 r^2 \sin^2 \theta + O(r^3).$$

It follows from a simple computation that

$$\int_{B_{L\epsilon}(p)} (h_1 - h_1(p)) e^{\phi_1^{\epsilon}}
= \frac{1}{2\pi} [k_3 + k_5 + k_1(b_1 + \lambda_1) + k_2(b_2 + \nu_1)] \epsilon^4 \log(1 + \pi L^2) + O(\epsilon^4),$$
(4.11)

$$\int_{B_{\delta}(p)\backslash B_{L\epsilon}(p)} (h_1 - h_1(p))e^{\phi_1^{\epsilon}}$$

$$= -\frac{1}{2\pi} [k_3 + k_5 + k_1(b_1 + \lambda_1) + k_2(b_2 + \nu_1)]\epsilon^4 \log(L\epsilon)^2 + O(\epsilon^4), \qquad (4.12)$$

and

$$\int_{M \setminus B_{\delta}(p)} (h_1 - h_1(p)) e^{\phi_1^{\epsilon}} = O\left(\epsilon^4\right). \tag{4.13}$$

By (4.10), (4.11), (4.12) and (4.13), we know that

$$\begin{split} &\int_{M} h_{1}e^{\phi_{1}^{\epsilon}} = h_{1}(p) \int_{M} e^{\phi_{1}^{\epsilon}} + \int_{M} (h_{1} - h_{1}(p))e^{\phi_{1}^{\epsilon}} \\ = &h_{1}(p)\epsilon^{2} \left(1 + \mathcal{M}\epsilon^{2} \log\left(1 + \pi L^{2}\right) - \left(\mathcal{M} + \frac{4\pi - \frac{\rho_{2}}{2}}{2\pi}\right)\epsilon^{2} \log\left(L\epsilon\right)^{2} \right) \\ &+ \frac{1}{2\pi} [k_{3} + k_{5} + k_{1}(b_{1} + \lambda_{1}) + k_{2}(b_{2} + \nu_{1})]\epsilon^{4} \log\left(1 + \pi L^{2}\right) \\ &- \frac{1}{2\pi} [k_{3} + k_{5} + k_{1}(b_{1} + \lambda_{1}) + k_{2}(b_{2} + \nu_{1})]\epsilon^{4} \log\left(L\epsilon\right)^{2} \\ &+ O\left(\epsilon^{4}\right) + O\left(\frac{\epsilon^{2}}{L^{4}}\right) + O\left(\epsilon^{5} \log L\right). \end{split}$$

Then we have

$$\log \int_{M} h_{1}e^{\phi_{1}^{\epsilon}}$$

$$= \log h_{1}(p) + \log \epsilon^{2}$$

$$+ \mathcal{M}\epsilon^{2} \log \left(1 + \pi L^{2}\right) - \left(\mathcal{M} + \frac{4\pi - \frac{\rho_{2}}{2}}{2\pi}\right) \epsilon^{2} \log (L\epsilon)^{2}$$

$$+ \frac{1}{2\pi h_{1}(p)} [k_{3} + k_{5} + k_{1}(b_{1} + \lambda_{1}) + k_{2}(b_{2} + \nu_{1})] \epsilon^{2} \log \left(1 + \pi L^{2}\right)$$

$$- \frac{1}{2\pi h_{1}(p)} [k_{3} + k_{5} + k_{1}(b_{1} + \lambda_{1}) + k_{2}(b_{2} + \nu_{1})] \epsilon^{2} \log (L\epsilon)^{2}$$

$$+ O\left(\epsilon^{2}\right) + O\left(\frac{1}{L^{4}}\right). \tag{4.14}$$

218 Page 20 of 22 L. Sun, X. Zhu

Direct calculation shows that

$$\int_{B_{2L\epsilon}(p)} e^{\phi_2^{\epsilon}} = O\left((L\epsilon)^4\right), \quad \int_{B_{2L\epsilon}(p)} e^{G_2} = O\left((L\epsilon)^4\right).$$

Since $\int_M h_2 e^{G_2} = 1$, we obtain that

$$\log \int_{M} h_{2} e^{\phi_{2}^{\epsilon}} = \log \left(1 - O\left((L\epsilon)^{4}\right)\right) = O\left((L\epsilon)^{4}\right). \tag{4.15}$$

Taking (4.2), (4.5), (4.6), (4.14) and (4.15) into the functional, we obtain that

$$J_{4\pi,\rho_2}(\phi_1^{\epsilon},\phi_2^{\epsilon}) = -4\pi - 4\pi \log \pi - 4\pi \log h_1(p) - 2\pi A_1(p) + \frac{\rho_2}{2} \int_M G_2(h_2 e^{G_2} + 1) dx dx + \frac{4\pi - \frac{\rho_2}{2}}{2\pi} + \frac{k_3 + k_5 + k_1(b_1 + \lambda_1) + k_2(b_2 + \nu_1)}{2\pi h_1(p)}$$

$$\times \epsilon^2 \left[\log \left(1 + \pi L^2 \right) - \log \left(L\epsilon \right)^2 \right]$$

$$+ O\left(\epsilon^2 \right) + O\left(\frac{1}{L^4} \right) + O\left((L\epsilon)^4 \log (L\epsilon) \right) + O\left(\epsilon^3 \log L \right).$$

Note that under the assumption (1.11), we have

$$\begin{split} \mathcal{N} := & \mathcal{M} + \frac{4\pi - \frac{\rho_2}{2}}{2\pi} + \frac{k_3 + k_5 + k_1(b_1 + \lambda_1) + k_2(b_2 + \nu_1)}{2\pi h_1(p)} \\ &= -\frac{K(p)}{2\pi} + \frac{(b_1 + \lambda_1)^2 + (b_2 + \mu_1)^2}{4\pi} \\ &\quad + \frac{4\pi - \frac{\rho_2}{2}}{2\pi} + \frac{\frac{1}{2}\Delta h_1(p) + k_1(b_1 + \lambda_1) + k_2(b_2 + \nu_1)}{2\pi h_1(p)} \\ &= \frac{1}{4\pi} \left[\Delta \log h_1(p) + 8\pi - \rho_2 - 2K(p) \right] + \frac{1}{4\pi} \left[(b_1 + \lambda_1 + k_1)^2 + (b_2 + \nu_1 + k_2)^2 \right] \\ > &0, \end{split}$$

where we have used $\Delta h_1(p) = \frac{1}{2}(k_3 + k_5)$ and $\nabla h_1(p) = (k_1, k_2)$. By choosing $L^4 \epsilon^2 = \frac{1}{\log(-\log \epsilon)}$, we have

$$J_{4\pi,\rho_2}(\phi_1^{\epsilon},\phi_2^{\epsilon}) = -4\pi - 4\pi \log \pi - 4\pi \log h_1(p) - 2\pi A_1(p) + \frac{\rho_2}{2} \int_M G_2(h_2 e^{G_2} + 1) - 4\pi \mathcal{N}\epsilon^2(-\log \epsilon^2) + o(\epsilon^2(-\log \epsilon^2)).$$

Since $\mathcal{N} > 0$, we have for sufficiently small ϵ that

$$J_{4\pi,\rho_2}(\phi_1^{\epsilon},\phi_2^{\epsilon}) < -4\pi - 4\pi \log \pi - 4\pi \log h_1(p) - 2\pi A_1(p) + \frac{\rho_2}{2} \int_M G_2(h_2 e^{G_2} + 1).$$

This finishes the proof of Theorem 1.3.

Data Availability Data sharing is not applicable to this article as obviously no datasets were generated or analyzed during the current study.

218

Declarations

Conflicts of Interest The authors have no Conflict of interest to declare that are relevant to the content of this article.

References

- 1. Brezis, H., Merle, F.: Uniform estimates and blow-up behavior of solutions of $-\Delta u = V(x)e^{u}$ in two dimensions, Comm. Partial Differential Equations 16(8–9), 1223–1253 (1991)
- 2. Chen, W., Li, C.: Prescribing Gaussian curvatures on surfaces with conical singularities. J. Geom. Anal. **1**(4), 359–372 (1991)
- 3. D'Aprile, T., Pistoia, A., Ruiz, D.: A continuum of solutions for the SU(3) Toda system exhibiting partial blow-up. Proc. Lond. Math. Soc. (3) 111(4), 797-830 (2015)
- 4. Ding, W., Jost, J., Li, J., Wang, G.: The differential equation $\Delta u = 8\pi 8\pi he^u$ on a compact Riemann surface. Asian J. Math. 2(2), 230–248 (1997)
- 5. Dunne, G.: Self-dual Chern-Simons theories. Lecture Notes in Physics, vol. 36. Springer, Berlin (1995)
- 6. Fontana, L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv. **68**(3), 415–454 (1993)
- 7. Han, Q., Lin, F.: Elliptic partial differential equations, Courant Lecture Notes in Mathematics, vol. 1. New York; American Mathematical Society, Providence, RI, New York University, Courant Institute of Mathematical Sciences (1997)
- 8. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Classics in Mathematics, Reprint of the, 1998th edn. Springer-Verlag, Berlin (2001)
- 9. Guest, M.A.: Harmonic maps, loop groups, and integrable systems, London Mathematical Society Student Texts, vol. 38. Cambridge University Press, Cambridge (1997)
- 10. Jost, J., Wang, G.: Analytic aspects of the Toda system. I. A Moser-Trudinger inequality. Comm. Pure Appl. Math. **54**(11), 1289–1319 (2001)
- 11. Jost, J., Lin, C., Wang, G.: Analytic aspects of the Toda system. II. Bubbling behavior and existence of solutions. Comm. Pure Appl. Math. 59(4), 526-558 (2006)
- 12. Kazdan, J.L., Warner, F.W.: Curvature functions for compact 2-manifolds. Ann. of Math. (2) 99, 14-47 (1974)
- 13. Lee, Y., Lin, C.-S., Wei, J., Yang, W.: Degree counting and shadow system for Toda system of rank two: one bubbling. J. Differential Equations **264**(7), 4343–4401 (2018)
- 14. Li, J., Li, Y.: Solutions for Toda systems on Riemann surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) **4**(4), 703–728 (2005)
- 15. Li, J., Chaona, Z.: The convergence of the mean field type flow at a critical case. Calc. Var. Partial Differential Equations 58(2), 60 (2019)
- 16. Li, M., Xu, X.: A flow approach to mean field equation. Calc. Var. Partial Differential Equations 61(4), 143 (2022)
- 17. Martinazzi, L.: Concentration-compactness phenomena in the higher order Liouville's equation. J. Funct. Anal. **256**(11), 3743–3771 (2009)
- 18. Ohtsuka, H., Suzuki, T.: Blow-up analysis for SU(3) Toda system. J. Differential Equations 232(2), 419-440 (2007)
- 19. Sun, L., Zhu, J.: Global existence and convergence of a flow to Kazdan-Warner equation with non-negative prescribed function. Calc. Var. Partial Differential Equations 60(1), 42 (2021)
- Sun, L., Zhu, J.: Existence of Kazdan-Warner equation with sign-changing prescribed function. Calc. Var. Partial Differential Equations **63**(2), 52 (2024)
- 21. Sun, Linlin and Zhu, Xiaobao, Existence results for Toda systems with sign-changing prescribed functions: Part II, arXiv:2412.07537
- 22. Tarantello, G.: Selfdual gauge field vortices: an analytical approach, Progress in Nonlinear Differential Equations and their Applications, 72. Birkhäuser Boston Inc, Boston, MA (2008)
- 23. Wang, Y., Yang, Y.: A mean field type flow with sign-changing prescribed function on a symmetric Riemann surface. J. Funct. Anal. 282(11), 109449 (2022)
- 24. Yang, Y.: Solitons in field theory and nonlinear analysis. Springer Monographs in Mathematics, Springer-Verlag, New York (2001)
- 25. Yang, Y., Zhu, X.: A remark on a result of Ding-Jost-Li-Wang. Proc. Amer. Math. Soc. 145(9), 3953–3959 (2017)

218 Page 22 of 22 L. Sun, X. Zhu

26. Yu, P., Zhu, X.: Extremal functions for a Trudinger-Moser inequality with a sign-changing weight. Potential Anal. (2024)

 Zhu, X.: Another remark on a result of Ding-Jost-Li-Wang. Proc. Amer. Math. Soc. 152(2), 639–651 (2024)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

