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Abstract
In this paper, we study the following Kazdan–Warner equation with a sign-changing pre-
scribed function h

−�u = 8π

(
heu

´
�
heu

− 1

)

on a closed Riemann surface � whose area equals one. The solutions are the critical points
of the functional J8π which is defined by

J8π (u) = 1

16π

ˆ

�

|∇u|2 +
 

�

u − ln

∣∣∣∣∣∣
ˆ

�

heu

∣∣∣∣∣∣ , u ∈ H1 (�) .

We prove the existence of the minimizer of J8π by assuming

� ln h+ + 8π − 2κ > 0

at each maximum point of 2 ln h+ + A, where κ is the Gaussian curvature, h+ is the positive
part of h and A is the regular part of the Green function. This generalizes the existence result
of Ding et al. (Asian J Math 1:230–248, 1997) to the sign-changing prescribed function case.
We are also interested in the blow-up behavior of a sequence uε of critical points of J8π−ε

with
´
�
heuε = 1, lim

ε↘0
J8π−ε (uε) < ∞ and obtain the following identity during the blow-up

process
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−ε = 16π

(8π − ε)h(pε)
[� ln h(pε) + 8π − 2κ(pε)] λεe

−λε + O
(
e−λε

)
,

where uε takes its maximum value λε at pε . Moreover, pε converges to the blow-up point
which is a critical point of the function 2 ln h+ + A.

Mathematics Subject Classification 35B33 · 58J05

1 Introduction

Let � be a closed Riemann surface whose area equals one. Let h be a nonzero smooth
function on � such that max

�
h > 0. For each positive number ρ, we consider the following

functional

Jρ(u) = 1

2ρ

ˆ

�

|∇u|2 +
 

�

u − ln

∣∣∣∣∣∣
ˆ

�

heu

∣∣∣∣∣∣ , u ∈ H1 (�) .

The critical points of Jρ are solutions to the following mean field equation

−�u = ρ

(
heu

´
�
heu

− 1

)
(1.1)

where � is the Laplace operator on �.
Mean field equation has a strong relationship with Kazdan–Warner equation. Forty years

ago, Kazdan and Warner [15] considered the solvability of the equation

−�u = heu − ρ,

where ρ is a constant and h is some smooth prescribed function. When ρ > 0, the equation
above is equivalent to the mean field Eq. (1.1). The special case ρ = 8π is sometimes called
the Kazdan–Warner equation. In particular, when � is the standard sphere S

2, it is called
the Nirenberg problem, which comes from the conformal geometry. It has been studied by
Moser [21], Kazdan and Warner [15], Chen and Ding [6], Chang and Yang [3], and others.
The mean field Eq. (1.1) appears in various context such as the abelian Chern-Simons-Higgs
models. The existence of solutions of (1.1) and its evolution problem has been widely studied
in recent decades (see for example [1, 2, 4, 5, 9–12, 16, 19, 20, 22, 23] and the references
therein).

In this paper, we consider the existence theory of Kazdan–Warner equation (ρ = 8π)
with sign-changing prescribed function. The key is to analyze the asymptotic behavior of the
blow-up solutions uε (see (1.2)) and the functional J8π . We prove the following identity near
the blow-up point, whose analogue was proved by Chen and Lin in [4] when the prescribed
function h is positive.

Theorem 1.1 Let h be positive somewhere on � and uε a blow-up sequence satisfying

−�uε = (8π − ε)
(
heuε − 1

)
, in � (1.2)

and

lim
ε↘0

J8π−ε (uε) < ∞. (1.3)
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Then up to a subsequence, for pε ∈ � with

λε = max
�

uε = uε (pε) ,

we have

−ε = 16π

(8π − ε)h(pε)
[� ln h+(pε) + 8π − 2κ(pε)]λεe

−λε + O
(
e−λε

)
, as ε ↘ 0,

where κ denotes the Gaussian curvature of �.

This yields a uniform bound of minimizers as ε ↘ 0 provided that� ln h+ +8π −2κ > 0
at all blow-up points. Let G(q, p) be the Green function on � with singularity at p, i.e.,

�G(·, p) = 1 − δp,

ˆ

�

G(·, p) = 0.

Under a local normal coordinate x centering at p, we have

8πG(x, p) = −4 ln |x | + A(p) + b1x1 + b2x2 + c1x
2
1 + 2c2x1x2 + c3x

2
2 + O

(|x |3) .

(1.4)

By Lemma 2.4, we know the blow-up point has to be a critical point of 2 ln h+(p) + A(p).
Thus, we get an existence result. That is, we have the following

Corollary 1.2 Let� be a compact Riemann surface and κ be its Gaussian curvature. Suppose
h is a smooth function which is positive somewhere on �. If we have the following for all
critical points of 2 ln h+ + A

� ln h+ + 8π − 2κ > 0,

then Eq. (1.1) has a solution for ρ = 8π .

Furthermore, if uε is a minimizer of J8π−ε, we can show the blow-up point is actually the
maximum point of 2 ln h+ + A.

Theorem 1.3 If uε is a minimizer of J8π−ε and blows up as ε ↘ 0, then the blow-up point
p0 is a maximum point of the function 2 ln h+ + A. Moreover,

inf
u∈H1(�)

J8π = −1 − ln π −
(
ln h(p0) + 1

2
A(p0)

)
,

and there is a sequence φε ∈ H1 (�) such that

J8π (φε) = −1 − ln π −
(
ln h(p0) + 1

2
A(p0)

)

− 1

4
(� ln h(p0) + 8π − 2κ(p0)) ε ln ε−1 + o

(
ε ln ε−1) .

Hence, we obtain a minimizing solution of the functional J8π . In other words, we obtain
the following

Theorem 1.4 Let� be a compact Riemann surface and κ be its Gaussian curvature. Suppose
h is a smooth function which is positive somewhere on �. If the following holds at the
maximum points of 2 ln h+ + A

� ln h + 8π − 2κ > 0,

then Eq. (1.1) has a minimizing solution for ρ = 8π .

123
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Remark 1.5 The condition mentioned in Theorem 1.4 can not hold on 2-sphere with arbitrary
metric. Assume g = e2φg0 and solve

−�g0ψ = 1

|�|g0
− e2φ

|�|g ,

ˆ

�

ψdμg0 = 0,

where |�|g stands for the area of � with respect to the metric g. Set h0 = he2φ+ρψ . Then

Jρ,h,g(u) = Jρ,h0,g0 (u − ρψ) − ρ

2

ˆ

�

|dψ |2g0 dμg0 ,

where Jρ,g,h(u) = 1
2ρ

´
�

∣∣∇gu
∣∣2
g dμg + 1

|�|g
´
�
udμg − ln

∣∣´
�
heudμg

∣∣. If the condition

mentioned in Theorem 1.4 holds, then there is a minimizer of J8π,h,g . Hence, there is also a
minimizer of J8π,h0,g0 . If � is a 2-sphere, we choose g0 such that the Gaussian curvature is
constant, then h0 must be a constant (see [14]). Thus h is a positive function and

�g ln h + 8π

|�|g − 2κg = e−2φ
(

�g0 ln h0 + 8π

|�|g0
− 2κg0

)
= 0

which is a contradiction.

Remark 1.6 Zhu [25] also obtained the infimum of the functional J8π if there is no minimizer
(when h is non-negative). He pointed out the blow-up point must be the positive point of h
and used the maximum principle to estimate the lower bound of the functional J8π when h
is non-negative. In our case, the maximum principle does not work since h is sign-changed.
We will use the method of energy estimate to give the lower bound of the functional J8π .
Such a method also can be used to consider the flow case (cf. [16, 23]) and the Palais-Smale
sequence.

Remark 1.7 The method in the proof of Theorem 1.4 can be used to prove the convergence of
theKazdan–Warner flow. In otherwords, under the same conditionmentioned inTheorem1.4,
there exists an initial date u0 such that the following flow

∂eu

∂t
= �u + 8π

(
heu

´
�
heu

− 1

)
, u(0) = u0

converges to a minimizer of J8π . This gives a generalization of the previous results [16]
(positive prescribed function case) and [23] (non-negative prescribed function case).

After we release the first version of this paper on arXiv (see arXiv:2012.12840), more
articles have appeared on this topic. For example,Wang and Yang give more details about our
Remark 1.7 in [24]. Chen, Li, Li and Xu [8] consider another flow approach to the Gaussian
curvature flow on sphere and reproved the existence result for sign-changing prescribed
function which was obtained by Han [14].

2 Preliminary

Recall the strong Trudinger–Moser inequality (cf. [13, Theorem 1.7])

sup
u∈H1(�),

´
�

|∇u|2≤1,
´
� u=0

ˆ

�

exp
(
4πu2

)
< ∞.
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which implies the Trudinger–Moser inequality

ln
ˆ

�

eu ≤ 1

16π

ˆ

�

|∇u|2 +
ˆ

�

u + c (2.1)

where c is a uniform constant depends only on the geometry of �.
We may assume h is positive somewhere. If 0 < ρ < 8π , then applying the Trudinger–

Moser inequality (2.1) Kazdan and Warner ([15, Theorem 7.2]) proved that the Kazdan–
Warner Eq. (1.1) admits a solution u which minimizes the functional Jρ and satisfies

ˆ

�

heu = 1.

We consider the critical case ρ = 8π . For every ε ∈ (0, 8π), let uε be a minimizer of
J8π−ε which satisfies

ˆ

�

heuε = 1.

Thus uε satisfies (1.2). It is clear that the function

ρ �→ inf
u∈H1(�)

Jρ(u)

is a decreasing function on (0,+∞). In particular, uε satisfies (1.3). By the Trudinger–Moser
inequality (2.1), we have

J8π−ε (uε) ≥ ln
ˆ

�

euε − c. (2.2)

Thus (1.3) and (2.2) gives
ˆ

�

euε ≤ C, ∀ε ∈ (0, 4π). (2.3)

One can check that

lim
ε↘0

J8π−ε (uε) = inf
u∈H1(�)

J8π (u).

If

lim sup
ε↘0

max
�

uε < +∞,

then up to a subsequence uε converges smoothly to a minimizer of J8π .
In the rest of this section, we only assume uε is a solution to (1.2) and satisfies the condition

(2.3).
Assume now {uε} is a blow-up sequence, i.e.,

lim sup
ε↘0

max
�

uε = +∞.

Denote h+ = max {h, 0} and h− = (−h)+ by the positive and negative part of h respectively.
Without loss of generality, wemay assume h±euεdμ� converges to a nonzeroRadonmeasure
μ± as ε → 0. As in [1, Page 1240], let us define the singular set S of the sequence {uε} by

123



   52 Page 6 of 16 L. Sun, J. Zhu

S =
{
x ∈ � : |μ| ({x}) ≥ 1

2

}
,

where |μ| = μ+ + μ−. By the Fatou Lemma, it follows from (2.3) that S is a finite set.
Applying Brezis-Merle’s estimate [1, Theorem 1], one can obtain that for each compact
subset K ⊂ � \ S (cf. [9, Lemma 2.8])∥∥∥∥∥∥uε −

ˆ

�

uε

∥∥∥∥∥∥
L∞(K )

≤ CK . (2.4)

Then one obtains a characterization of S by the blow-up sets of {uε} (cf. [1, Page 1240])

S =
{
p ∈ � : ∃ pε ∈ �, s.t . lim

ε→0
pε = p, lim

ε→0
uε (pε) = +∞.

}

In fact, on one hand, by (2.4), we know that{
p ∈ � : ∃ pε ∈ �, s.t . lim

ε→0
pε = p, lim

ε→0
uε (pε) = +∞

}
⊂ S.

On the other hand, for p0 ∈ S, we may assume B2r (p0) ∪ S = {p0} and choose pε ∈ Br
with λε := uε(pε) = max

Br (p0)
uε. One can show that lim

ε→0
λε = +∞ and lim

ε→0
pε = p0 (cf. [23,

Theorem 3.4]). In particular,

S ⊂
{
p ∈ � : ∃ pε ∈ �, s.t . lim

ε→0
pε = p, lim

ε→0
uε (pε) = +∞.

}

Moreover, S is nonempty and

lim
ε→0

ˆ

�

uε = −∞,

which implies that uε goes to −∞ uniformly on each compact subsets K ⊂ � \ S. Thus,
|μ| is a Dirac measure. By using blow-up analysis (cf. [18, Lemma 1]) and the classification
result of Chen-Li [7, Theorem 1] as in the proof of [23, Lemma 3.5], one can show that

S = {
p ∈ � : μ+ ({p}) ≥ 1, h(p) > 0

}
and thenμ− = 0. In fact, fixed p0 ∈ S, let λε and pε are given before. By choose a conformal
coordinate y centered at x0, we consider the blow-up sequence

ũε(y) = uε

(
pε + e−λε/2y

) − λε.

One can show that ũε will converges to a solution w to the following PDE

−�R2w = h(p0)Cew,

ˆ

R2
ew < ∞,

for some positive number C . By a classification theorem of Chen-Li [7, Theorem 1], we
know that h(p0) > 0 which meansμ− = 0. Then according the Fatou Lemma, we know that
μ+(p0) ≥ 1. Hence, heuεdμ� converges to the nonzero Radon measure μ+ as ε → 0. As
in Lemma 3.5 in [23], we conclude that S = {p0} is a single point set and |μ| = μ+ = δp0 .
Thus

123
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Lemma 2.1 (cf. Lemma 2.6 in [9]) uε − ´
�
uε converges to 8πG(·, p0) weakly in W 1,q (�)

and strongly in Lq (�) for every q ∈ (1, 2), and converges in C2
loc (� \ {p0}).

For a fixed small δ0 > 0 and uε of J8π , we define ρε to be

ρε = (8π − ε)

ˆ

Bδ0 (p0)

heuε

and

λε = uε(pε) = max
Bδ(p0)

uε → +∞.

We may assume

h|Bδ0 (p0) ≥ 1

2
h(p0) > 0, max

∂Bδ0 (p0)
uε − min

∂Bδ0 (p0)
uε ≤ C,

ˆ

Bδ0 (p0)

euε ≤ C .

Li [17, Theorem 0.3] obtained the following local estimate∣∣∣∣∣uε(p) − ln
eλε

1 + (8π−ε)h pε
8 eλε |p − pε|2

∣∣∣∣∣ ≤ C (2.5)

for p ∈ Bδ0(p0), where |p − pε| stands for the distance between p and pε . Together with
Lemma 2.1, the above local estimate (2.5) gives the following

Lemma 2.2 (cf. Corollary 2.4 in [4]) There exists a constant C > 0 such that

|uε + λε| ≤ C, in � \ Bδ0(p0).

Lemma 2.3 (cf. Estimate A in [4]) Set wε to be the error term defined by

ωε(q) = uε(q) − ρεG(q, pε) − ūε, on � \ Bδ0/2(p0),

where ūε = ´

�

uε. Then we have

‖ωε‖C1
(
�\Bδ0 (p0)

) = O
(
e−λε/2

)
.

Proof Notice that h maybe non-positive outside of Bδ0/2(p0) and in this case we also have
the above estimate. We list a proof here. By Green representation formula, for every q ∈
� \ Bδ0(p0)

uε(q) − ūε = (8π − ε)

ˆ

�

G(q, p)
[
h(p)euε(p) − 1

]
dμ�(p)

= (8π − ε)

ˆ

�

(G(q, p) − G (q, pε))
[
h(p)euε(p) − 1

]
dμ�(p)

= (8π − ε)

ˆ

�\Bδ0/2(p0)

(G(q, p) − G (q, pε)) h(p)euε(p)dμ�(p)

+ (8π − ε)

ˆ

Bδ0/2(p0)

(G(q, p) − G (q, pε)) h(p)euε(p)dμ�(p)

123
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+ (8π − ε)G(q, pε)

= (8π − ε)G(q, pε) + O
(
e−λε/2

)
.

Here we used estimate (2.4) and Li’s local estimate (2.5). By definition,

ρε = (8π − ε) − (8π − ε)

ˆ

�\Bδ0 (p0)

heuε = (8π − ε) + O
(
e−λε

)
.

Thus

uε(q) − ūε − ρεG(q, pε) = O
(
e−λε/2

)
, ∀q ∈ � \ Bδ0(p0).

Notice that

−�(uε − ūε − ρεG(·, pε)) = (8π − ε)heuε + ρε − (8π − ε)

= O
(
e−λε

)
, in � \ Bδ0(p0)

and

uε − ūε − ρεG(·, pε) = O
(
e−λε/2

)
, on ∂Bδ0(p0).

The standard elliptic estimate gives

‖uε − ūε − ρεG(·, pε)‖C1
(
�\Bδ0 (p0)

) = O
(
e−λε/2

)
.

��
Based on these facts, we then have the following local estimates. The proofs are same as

those in [4], so we omit them here.

Lemma 2.4 (cf. Estimate B in [4]) By using the local normal coordinate x centering at pε ,
we set the regular part of Green function G(x, pε) to be

G̃ε(x) = G(x, pε) + 1

2π
ln |x | ,

and set

G∗
ε(x) = ρεG̃ε(x).

Then we get ∣∣∇ (
ln h+ + G∗

ε

)
(pε)

∣∣ = O
(
e−λε/2

)
.

Notice that the Green function is symmetric and we conclude that∣∣∣∣∇
(
2 ln h+ + 8π − ε

8π
A

)
(pε)

∣∣∣∣ = O
(
e−λε/2

)
.

In Bδ0(pε), we define the following function as in [4]

vε(p) = ln
eλε(

1 + (8π−ε)h(pε)
8 eλε |p − qε|2

)2 ,

where qε is chosen to satisfy

∇vε(pε) = ∇ ln h(pε),

123
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which implies |pε − qε| = O
(
e−λε

)
. We also set the error term as

ηε(p) = uε(p) − vε(p) − (G∗
ε(p) − G∗

ε(pε))

and

Rε =
(

(8π − ε)h(pε)

8
eλε

) 1
2

δ0.

Then we have the following estimate for the scaled function η̃ε(z) = ηε

(
δ0R−1

ε z
)
for |z| ≤

Rε .

Lemma 2.5 (cf. Estimates C, D and E in [4]) For any τ ∈ (0, 1), there exists a constant
C = Cτ such that

ηε(p) =
(
4 − ρε

2π

)
ln |p − pε| + O

⎛
⎝λεe

− τλε
2 sup

δ0
2 ≤|p−pε |≤δ0

|ηε| + e− λε
2

⎞
⎠

and

|η̃ε(z)| ≤ C (1 + |z|)τ
(
e−τλε + e− τ

2 λε |8π − ρε|
)

hold for p ∈ B̄δ0(pε)\Bδ0/2(pε) and |z| ≤ Rε.

The following lemma shows the relationship between ρε − 8π and ηε .

Lemma 2.6 (cf. Estimate F in [4])

ρε − 8π = −
ˆ

∂Bδ0 (pε)

∂ηε

∂ν
dσ + O

(
e−λε

)
,

where ν denotes the unit outer normal of ∂Bδ0(pε).

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 as in [4].

Proof By Lemma 2.2, we have

ρε = 8π − ε + O
(
e−λε

)
. (3.1)

This implies thatweneed to controlρε−8π ,which is equivalent to compute− ´
∂Bδ0 (pε)

∂ηε

∂ν
dσ

by Lemma 2.6. To do so, we set

ψ = 1 − a|x − yε|2
1 + a|x − yε|2 for x ∈ R

2,

where a = (8π−ε)h(pε)
8 eλε . Then ψ satisfies

�0ψ + (8π − ε)h(pε)e
vεψ = 0, (3.2)

where �0 is the standard Laplacian in R2. On the other hand, by (3.1), we have

�0ηε = �0uε − �0vε − �0G
∗
ε

= −(8π − ε)h(pε)e
vε(x)H(x, ηε) + O(e−λε ),

(3.3)

123
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where

H(x, t) = h∗(x)
h(pε)

et+G∗
ε (x)−G∗

ε (0) − 1

and h∗(x) = h(x)e2φ(x), φ(x) comes from the metric ds2 = e2φ(x)dx2 with φ(0) = 0 and
∇φ(0) = 0. By using (3.2), (3.3) and integration by parts, we get

ˆ

∂Bδ0 (pε)

(
ψ

∂ηε

∂ν
− ηε

∂ψ

∂ν

)
dσ =

ˆ

Bδ0 (pε)

(ψ�0ηε − ηε�0ψ)dx

= −
ˆ

Bδ0 (pε)

ψ(x)(8π − ε)h(pε)e
vε(x)(H(x, ηε) − ηε(x))

+ O
(
e−λε

)
.

Since ψ satisfies

ψ(x) = −1 + 2

1 + a|x − yε|2 = −1 + O
(
e−λε

)
and |∇ψ(x)| = O

(
e−λε

)

for x ∈ ∂Bδ0(pε), we have

−
ˆ

∂Bδ0 (pε)

∂ηε

∂ν
dσ = −

ˆ

Bδ0 (pε)

ψ(x)(8π − ε)h(pε)e
vε(x)(H(x, ηε) − ηε(x)) + O

(
e−λε

)
.

Recall

H(x, ηε) − ηε(x) = h∗(x)
h(pε)

eηε+G∗
ε (x)−G∗

ε (0) − 1 − ηε(x)

= H(x, 0) + H(x, 0)ηε + O(1)|ηε|2,
where

H(x, 0) = h∗(x)
h(pε)

eG
∗
ε (x)−G∗

ε (0) − 1

= 1

h(pε)
e2φ(x)+ln h(x)+G∗(x)−G∗(pε) − 1

= 〈bε, x〉 + 〈Bεx, x〉 + O(1)|x |2+β,

where bε and Bε are the gradient and Hessian of H(x, 0) at x = 0. By Lemma 2.4, we have
|bε| = O

(
e−λ/2

)
.

Let z and zε satisfy ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x = e− λε

2

(
h(pε)(8π − ε)

8

)− 1
2

z,

yε = e− λε
2

(
h(pε)(8π − ε)

8

)− 1
2

zε.

Then we get

123
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∣∣∣∣∣∣∣
ˆ

Bδ0 (pε)

evε 〈bε, x〉dx

∣∣∣∣∣∣∣
≤ Ce−λε

ˆ

|z|≤R0

(
1 + |z − zε|2

)−2 |z|dz = O
(
e−λε

)
,

ˆ

Bδ0 (pε)

evε |x |2+βdx ≤ Ce− 2+β
2 λε

ˆ

|z|≤R0

(
1 + |z|2)−2 |z|2+βdz = O

(
e−λε

)

and

ˆ

Bδ0 (pε)

evε (xα − pε,α)(xβ − pε,β)dx

=
(

(8π − ε)
h(pε)

8

)−2

e−λε

ˆ

|z|≤R0

(
1 + |z − zε|2

)−2
zαzβdz

=
(

(8π − ε)
h(pε)

8

)−2

e−λεπ
[
δαβ ln Rε + O

(
e− λε

2

)]
,

where xα stands for the α-th coordinate of x and 1 ≤ α, β ≤ 2. Putting those estimates above
together, we have

ˆ

Bδ0 (pε)

(8π − ε)h(pε)e
vε H(x, 0)dx = 32π

(8π − ε)h(pε)

(
B11

ε + B22
ε

)
e−λελε + O(1)e−λε .

Note that �0G∗
ε(0) = ρε = (8π − ε) + O

(
e−λε

)
and −�0φ(0) = κ(pε). By Lemma 2.4,

we know

B11
ε + B22

ε = 1

2
�0H(0, 0)

= 1

2
(� ln h(pε) + 8π − ε − 2κ(pε)) + O

(
e−λε

)
.

For the remainder terms, we use Lemma 2.5 to get

ˆ

Bδ0 (pε)

evε H(x, 0)ηε(x)dx = O
(
e−λε

)

ˆ

Bδ0 )(pε)

evεη2ε (x)dx = O
(
e−λε + e−τλε |8π − ρε|

)
.

Therefore,

ρε − 8π = 16π

(8π − ε)h(pε)
[� ln h(pε) + 8π − 2κ(pε)] λεe

−λε + O
(
e−λε

)

and this completes the proof. ��
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4 Proof of Theorem 1.3

Proof On one hand, checking the proof in [23, Theorem 1.2] step by step, we have

inf
u∈H1(�)

J8π (u) = lim
ε→0

J8π (uε) ≥ −1 − ln π −
(
ln h(p0) + 1

2
A(p0)

)

≥ −1 − ln π − max
p∈�

(
ln h+(p) + 1

2
A(p)

)
.

(4.1)

We sketch the proof here. Without loss of generality, up to a conformal change of the metric,
we may assume that the metric is the Euclidean metric around p0 and we also assume p0 is
the origin o ∈ B ⊂ �. Choose pε → p0 such that

λε = uε (pε) = max
�

uε → +∞.

Set rε = e−λε/2 and

ũε = uε (pε + rεx) + 2 ln rε, |x | < r−1
ε (1 − |pε|) .

Then ũε converges to w in C∞
loc

(
R
2
)
where

w(x) = −2 ln
(
1 + πh(p0) |x |2) .

We denote by oε(1) (resp. oR(1), oδ(1)) the terms which tents to zero as ε → 0 (resp.
R → ∞, δ → 0). Moreover, oε(1) may depend on R, δ, while oR(1) may depend on δ. We
have

1

16π

ˆ

Brε R(pε)

|∇uε|2 = 1

16π

ˆ

BR

|∇ũε|2 = ln
(
πh(p0)R

2) − 1 + oε(1) + oR(1).

According to Lemma 2.1, a direct calculation yields

1

16π

ˆ

�\Bδ(pε)

|∇uε|2 = −2 ln δ + 1

2
A(p0) + oε(1) + oδ(1).

Under polar coordinates (r , θ), set

u∗
ε(r) = 1

2π

2πˆ

0

uε

(
pε + re

√−1θ
)
dθ.

Then

u∗
ε(δ) =

ˆ

�

uε − 4 ln δ + A(p0) + oε(1) + oδ(1),

u∗
ε (rεR) = −2 ln rε − 2 ln

(
πh(p0)R

2) + oε(1) + oR(1).

Solve {
−�ξε = 0, in Bδ (pε) \ BrεR (pε) ,

ξε = u∗
ε , on ∂

(
Bδ (pε) \ BrεR (pε)

)
.
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We have
1

16π

ˆ

Bδ(pε)\Brε R(pε)

|∇uε|2 ≥ 1

16π

ˆ

Bδ(pε)\Brε R(pε)

∣∣∇u∗
ε

∣∣2

≥ 1

16π

ˆ

Bδ(pε)\Brε R(pε)

|∇ξε|2 =
(
u∗

ε(δ) − u∗
ε(rεR)

)2
8 (ln δ − ln (rεR))

.

Thus

1

16π

ˆ

Bδ(pε)\Brε R(pε)

|∇uε|2 ≥
(
u∗

ε(δ) − u∗
ε(rεR)

)2
−8 ln rε

(
1 + ln (R/δ)

− ln rε

)

=

(
τε + ´

�

uε − 2 ln rε

)2

−8 ln rε
+ 1

8

(
2 + τε

ln rε
+

´
�
uε

ln rε

)2

ln(R/δ)

−
ˆ

�

uε − 4 ln (R/δ) − A(p0) − 2 ln(πh(p0))

+ oR(1) + oδ(1),

where

τε = u∗
ε(δ) − u∗

ε (rεR) −
ˆ

�

uε + 2 ln rε

= 4 ln (R/δ) + A(p0) + 2 ln (πh(p0)) + oε(1) + oδ(1) + oR(1).

Hence, we get

C ≥ J8π (uε)

≥ −1 − ln π − ln h(p0) − 1

2
A(p0)

+
(
τε + ´

�
uε − 2 ln rε

)2
−8 ln rε

+ 1

8

((
2 + τε

ln rε
+

´
�
uε

ln rε

)2

− 16

)
ln(R/δ)

+ oε(1) + oR(1) + oδ(1)

which implies
ˆ

�

uε = −λε + O
(√

λε

)

and we obtain (4.1).
On the other hand, checking the proof in [9, Theorem 1.2] step by step, for each p with

h(p) > 0, there exists a sequence φε ∈ H1 (�) such that

J8π (φε) = −1 − ln π −
(
ln h(p) + 1

2
A(p)

)

− 1

4

(
� ln h(p) + 8π − 2κ(p) +

∣∣∣∣∇
(
ln h + 1

2
A

)
(p)

∣∣∣∣
2
)

ε ln ε−1

+ o
(
ε ln ε−1) .
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Here we used the fact that the Green function G is symmetric. These test functions φε can
be constructed as following: without loss of generality, assume p = 0 and

8πG(x, 0) = −2 ln |x | + A(p) + b1x1 + b2x2 + β(x),

and take

φε(x) =

⎧⎪⎨
⎪⎩

−2 ln
(|x |2 + ε

) + b1x1 + b2x2 + ln ε, |x | < αε

√
ε,

8πG(x, 0) − η
(
αε

√
ε |x |) β(x) + Cε + ln ε, αε

√
ε ≤ |x | < 2αε

√
ε,

8πG(x, 0) + Cε + ln ε, |x | ≥ 2αε

√
ε,

where η is a cutoff function supported in [0, 2] and η = 1 on [0, 1] and the positive constants
αε and Cε are chosen carefully. The assumption h is positive in [9] is used only to ensure that

lim
ε↘0

ˆ

�

heφε > 0.

If p is a critical point (e.g., a maximum point) of the function 2 ln h+ + A, then

J8π (φε) = −1 − ln π −
(
ln h(p) + 1

2
A(p)

)

− 1

4
(� ln h(p) + 8π − 2κ(p)) ε ln ε−1 + o

(
ε ln ε−1) .

This gives

inf
u∈H1(�)

J8π (u) = −1 − ln π − max
p∈�

(
ln h+(p) + 1

2
A(p)

)

= −1 − ln π −
(
ln h(p0) + 1

2
A(p0)

)
.

In particular, the blow-up point p0 must be a maximum point of the function ln h+ + A. ��
Remark 4.1 One can write down the oε(1) as follows. By Lemma 2.3 and (1.4), direct com-
putations give us

1

16π

ˆ

�\Bδ(pε)

|∇uε|2 =
(
1 − ε

4π
+ ε2

64π2 + O
(
e−λε

))

(
−2 ln δ + 1

2
A(pε) + O

(
e−λε

) + oδ(1)

)
+ O

(
e−λε

)

= −2 ln δ + 1

2
A(pε) − ε

4π

(
−2 ln δ + 1

2
A(pε) + O

(
e−λε

) + oδ(1)

)

+ O
(
ε2

) + O
(
e−λε

) + oδ(1).

From the proof of Theorem 1.1, we also get the following
ˆ

Bδ(pε)

|∇ηε|2 = O
(
ε2δ

) + O
(
e−λε

)
,

1

16π

ˆ

Brε R(pε)

|∇vε|2 = ln
(
πh(p0)R

2) − 1 + oR(1),
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ˆ

Bδ(pε)

∣∣∇G∗∣∣2 = O
(
δ2

)

and

1

16π

ˆ

Brε R(pε)

∣∣∇G∗∣∣2 = O
(
r2ε

) = O(e−λε ).

These imply that

1

16π

ˆ

Brε R(pε)

|∇uε|2 = ln
(
πh(p0)R

2) − 1 + O
(
ε2e− λε

2

)
+ O

(
e−λε

) + oR(1).

On the neck, oε(1) are the convergent rates in Lemma 2.1 and ũε → w.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed in this
study.
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