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Abstract
We consider an evolution problem associated to the Kazdan–Warner equation on a closed
Riemann surface (�, g)

−�gu = 8π

(
heu

´
�
heu dμg

− 1
´
�
dμg

)

where the prescribed function h ≥ 0 and max� h > 0. We prove the global existence and
convergence under additional assumptions such as

�g ln h(p0) + 8π − 2K (p0) > 0

for any maximum point p0 of the sum of 2 ln h and the regular part of the Green function,
where K is the Gaussian curvature of �. In particular, this gives a new proof of the existence
result byYang andZhu (ProAmMathSoc145:3953–3959, 2017)whichgeneralizes existence
result of Ding et al. (Asian J Math 1:230–248, 1997) to the non-negative prescribed function
case.
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1 Introduction

Let � be a closed Riemann surface with a fixed conformal structure. Choose a conformal
metric g in the conformal class such that the area of �g := (�, g) is one. Let h be a non-
negative but nonzero smooth function on �. We consider the following Kazdan–Warner
equation

−�gu = 8π

(
heu

´
�
heu dμg

− 1

)
. (1.1)

Here �g is the Laplace–Beltrami operator. The solutions to (1.1) are the critical points of the
following functional:

J (u) :=
ˆ

�

(
1

2

∣∣∇gu
∣∣2
g + 8πu

)
dμg − 8π ln

(ˆ
�

heu dμg

)
.

Many mathematicians have contributed to the study of Kazdan–Warner equation. Forty
years ago, Kazdan and Warner [22] considered the solvability of the equation

−�gu = heu − ρ,

where ρ is a constant and h is some smooth prescribed function. When ρ > 0, the equation
above is equivalent to

−�gu = ρ(heu − 1).

In particular, when �g is the standard sphere S2, it is called the Nirenberg problem, which
comes from the conformal geometry. It has been studied by Moser [28], Kazdan and
Warner [22], Chen and Ding [10], Chang and Yang [7] and others.

The Kazdan–Warner equation can be also viewed as a special case of the following mean
field equation:

−�gu = ρ

(
f eu

´
�

f eu dμg
− 1

)
, (1.2)

where f is a smooth function on �. The mean field Eq. (1.2) appears in various context such
as the abelian Chern–Simons–Higgs models (see for example [3,32,33]). When f > 0, the
equation (1.2) is equivalent to the following equation:

−�gu = ρ
eu

´
�
eu dμg

− Q, (1.3)

where Q ∈ C∞(�) is a given function such that
´
�
Q dμg = ρ. The existence of solutions

of (1.3) has been widely studied in recent decades. Many partial existence results have been
obtained for noncritical cases according to the Euler characteristic of � (see for example
Brezis andMerle [2], Chen andLin [9], Ding, Jost, Li andWang [13], Lin [26],Malchiodi [27]
and the references therein). Djadli [14] established the existence of solutions for all surfaces
� when ρ �= 8kπ by studying the topology of sublevels to achieve a min-max scheme
which already introduced by Djadli and Malchiodi in [15]. At this point we want to mention
another generalization in [35], where the author considered the mean field equations on a
closed Riemannian surface with the action of an isometric group.

The following evolution problem associated to (1.3) was also well studied by Castéras for
noncritical cases.

∂eu

∂t
= �gu + ρ

eu
´
�
eu dμg

− Q, u(·, 0) = u0 (1.4)
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where u0 ∈ C2+α(�). This flow possesses a structure that is very similar to the Calabi and
Ricci-Hamilton flows.When Q is a constant equal to the scalar curvature of� with respect to
themetric g, theflow (1.4) has been studied byStruwe [30].Aflowapproaching toNirenberg’s
problem was studied by Struwe in [31]. The global existence and convergence of (1.4) were
proved by Castéras in [4]. However, the convergence result there does not include the critical
cases, i.e. ρ = 8kπ for k ∈ N. Recently, when ρ = 8π , a sufficient condition for convergence
was given by Li and Zhu in [23]. This gives a new proof of the result of Ding, Jost, Li and
Wang in [12] which was extended by Lin and Chen to general critical cases [8] and recently
generalized by Yang and Zhu to non-negative prescribed function cases in [34,36].

Motivated by these results, we consider the following evolution problem for (1.1) with
non-negative prescribed function:

∂eu

∂t
= �gu + 8π

(
heu

´
�
heu dμg

− 1

)
, u(·, 0) = u0 (1.5)

where u0 ∈ H2(�) and h is a non-negative but nonzero smooth function on �. Since the
prescribed function h may be zero on some nonempty subset of �, the global existence and
convergence of this flow are subtle. Precisely, we can not use the lower bound of h to do
a priori estimates. Therefore, Castéras’s proof of global existence for positive prescribed
function does not apply to our situation. In addition, the condition (ii) of (1.6) in Castéras’s
compactness result [5] actually assumes

−∂eun

∂t
+ ρeun ≥ −C, ∀x ∈ �,∀n ≥ 1,

for a sequence of time-slices un := u(·, tn). This condition was proved in Proposition 2.1 [4].
However, the proof also need the prescribed function h to be positive. Thus, our a priori
estimates in the proof of global existence and blow-up analysis used in the proof of global
convergence are both new.

First, we prove the global existence of the flow (1.5).

Theorem 1.1 (Global existence) For u0 ∈ H2(�), there is a unique global solution u ∈
C∞ (� × (0,∞)) to (1.5) with

u ∈ ∩0<T<∞
(
L∞ (

0, T ; H2 (�)
) ∩ H1 (0, T ; H1 (�)

) ∩ H2 (0, T ; H−1 (�)
))

.

Moreover, for every 0 < T < ∞, there is a positive constant C
(
T , ‖u0‖H2(�)

)
depending

only on T , the upper bound of ‖u0‖H2(�) and �g,

ess sup0≤t≤T ‖u(t)‖H2(�) +
(ˆ T

0

(∥∥∥∥∂u(t)

∂t

∥∥∥∥
2

H1(�)

+
∥∥∥∥∂2u(t)

∂t2

∥∥∥∥
2

H−1(�)

)
dt

)1/2

≤ C
(
T , ‖u0‖H2(�)

)
, (1.6)

where u(t) := u(·, t). In particular, if u0 is smooth, then u is smooth. Here the Sobolev
spaces Hk(0, T ; X) := Wk,2(0, T ; X) and Wk,p(0, T ; X) consists of all functions u ∈
L p(X×[0, T ]) such that ∂u

∂t , . . . c,
∂k

∂tk
exists in the weak sense and belongs to L p(X×[0, T ])

and
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‖u‖Wk,p(0,T ;X) :=

⎧⎪⎨
⎪⎩

(´ T
0

(
‖u(t)‖p

X +∑k
i=1

∥∥∥ ∂ i u(t)
∂t i

∥∥∥p
X

)
dt
)1/p

, 1 ≤ p < ∞,

ess sup
0≤t≤T

(
‖u(t)‖X +∑k

i=1

∥∥∥ ∂ i u(t)
∂t i

∥∥∥
X

)
, p = ∞.

Then it is interesting to consider the convergence of the flow. To do so, we begin with the
monotonicity formula. It gives us that a sequence of positive numbers tn → ∞ as n → ∞
with

ˆ

�

eun
∣∣∣∣∂un∂t

∣∣∣∣
2

dμg → 0, as n → ∞,

where un := u(tn). If ‖un‖H2(�) is uniformly bounded, then un subsequentially converges to
a smooth solution of (1.1). Otherwise, we can get the following lower bound of the functional
J along the flow (1.5).

Theorem 1.2 If the flow (1.5) develops a singularity at the infinity, then we have

J (u(t)) ≥ C0 = −4π max
x∈�

(A(x) + 2 ln h(x)) − 8π ln π − 8π, ∀t ≥ 0,

where A is the regular part of the Green function G which has the following expansion in
the normal coordinate system:

G(x, p) = −4 ln r + A(p) + b1x1 + b2x2 + c1x
2
1 + 2c2x1x2 + c3x

2
2 + O(r3),

where r(x) = distg(x, p).

Last, by imposing certain geometric condition, we get functions whose value under J is
strictly less than C0. Consequently, when the flow starts with these functions, the previous
un will converges in H2(�). Moreover, it follows from the Łojasiewicz-Simon gradient
inequality that the convergence of the flow is actually global in time.

Theorem 1.3 (Global convergence) There exists an initial data u0 ∈ C∞(�) such that u(t)
converges in H2(�) to a smooth solution of (1.1) provided that

�gh (p0) + 2 (b1(p0)k1 (p0) + b2 (p0) k2 (p0))

> − (
8π + b21 (p0) + b22 (p0) − 2K (p0)

)
h (p0) ,

(1.7)

where K is the Gaussian curvature of �, ∇gh(p0) = (k1(p0), k2(p0)) in the normal coor-
dinate system, p0 is the maximum point of the function q �→ A(q) + 2 ln h(q).

Remark 1.4 As pointed by Ding, Li, Jost and Wang in [12, Remark 1.1], the inequality (1.7)
is implied by the following one:

�g ln h(p0) + 8π − 2K (p0) > 0

where p0 is the maximum point of the function q �→ A(q) + 2 ln h(q).

Remark 1.5 Forρ ∈ (0, 8π) and any initial data u0 ∈ C∞ (�), by using a similarly argument,
the

∂eu

∂t
= �gu + ρ

(
heu

´
�
heu dμg

− 1

)
, u(·, 0) = u0
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admits a unique global smooth solution which converges to a solution to

�gu∞ + ρ

(
heu∞

´
�
heu∞ dμg

− 1

)
= 0.

The remaining part of this paper will be organized as follows. In Sect. 2, we prove the
global existence of the flow (1.5). In Sect. 3, we prove the number of the singularities is at
most one. In Sect. 4, we show the lower bound of J along the flow if the singularity occurs.
In the last Sect. 5, we prove the global convergence of the flow.

2 Global existence

The aim of this section is to prove the global existence of the mean field flow (1.5), i.e.
Theorem 1.1.

Proof of Theorem 1.1 First, we assume u0 ∈ C∞ (�). Since the flow is parabolic, the short
time existence of (1.5) follows from the standard method (e.g. [19]). Thus, there exists T > 0
such that u ∈ C∞(� × [0, T ]) is a solution of (1.5).

Along the flow (1.5), it is easy to see

d

dt

ˆ

�

eu(t) dμg = 0 (2.1)

and

d

dt
J (u(t)) = −

ˆ

�

eu(t)
∣∣∣∣∂u(t)

∂t

∣∣∣∣
2

dμg. (2.2)

According to (2.2) and (2.1), we get

ˆ

�

(
1

2

∣∣∇gu(t)
∣∣2
g + 8πu(t)

)
dμg ≤ J (u0) + 8π ln max

�
h + 8π ln

ˆ

�

eu0 dμg. (2.3)

Recall the Trudinger-Moser inequality (cf. [18, Theorem 1.7])

ln
ˆ

�

eu dμg ≤ 1

16π

ˆ

�

∣∣∇gu
∣∣2 dμg +

 

�

u dμg + c, ∀u ∈ H1 (�) , (2.4)

where c is a constant depending only on the Riemann surface (�, g). As an immediately
consequence of (2.4),

J (u(t)) ≥ 8π ln
ˆ

�

eu(t) dμg − 8πc − 8π ln
ˆ

�

heu(t) dμg (2.5)

and (2.1) imply that

0 < C−1 exp
(
−C ‖u0‖2H1(�)

)
≤
ˆ

�

heu(t) dμg ≤ C exp
(
C ‖u0‖2H1(�)

)
. (2.6)
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Together with

d

dt

ˆ

�

epu(t) dμg = p
ˆ

�

e(p−1)u(t)
(

�gu(t) + 8π
heu(t)

´
�
heu(t)

− 8π

)
dμg

= −p(p − 1)
ˆ

�

e(p−1)u(t)
∣∣∇gu(t)

∣∣2
g dμg

+ 8pπ

(´
�
hepu(t) dμg´

�
heu(t) dμg

−
ˆ

�

e(p−1)u(t) dμg

)
,

we have

d

dt

ˆ

�

epu(t) dμg ≤ Cp exp
(
C ‖u0‖2H1(�)

)ˆ
�

epu(t) dμg.

Thus,
ˆ

�

epu(t) dμg ≤ exp
[
Cp exp

(
C ‖u0‖2H1(�)

)
t
]ˆ

�

epu0 dμg, ∀p ≥ 1. (2.7)

In order to get the global existence of solution when u0 ∈ H1(�), it is necessary to derive
several a priori estimates (1.6). To do this, we split three steps.

Step 1

‖u(t)‖H1(�) ≤ C
(
T , ‖u0‖H1(�)

)
for any t ∈ [0, T ].

Set

A(t) =
{
x ∈ � : eu(x,t) ≥ 1

2

ˆ

�

eu0 dμg.

}

According to (2.1) and (2.7), we have
ˆ

�

eu0 dμg =
ˆ

�

eu(t) dμg =
ˆ

�\A(t)
eu(t) dμg +

ˆ

A(t)
eu(t) dμg

≤1

2

ˆ

�

eu0 dμg + C
(
T , ‖u0‖H1(�)

) |A(t)|1/2g ,

where |A(t)|g stands for the area of A(t). This gives

|A(t)|g ≥ C
(
T , ‖u0‖H1(�)

)−1
> 0,

∣∣∣∣
ˆ

A(t)
u(t) dμg

∣∣∣∣ ≤ C
(
T , ‖u0‖H1(�)

)

and

|ū(t)| :=
∣∣∣∣
ˆ

�

u(t) dμg

∣∣∣∣
≤
∣∣∣∣
ˆ

�\A(t)
u(t) dμg

∣∣∣∣+
∣∣∣∣
ˆ

A(t)
u(t) dμg

∣∣∣∣
≤ |�\A(t)|1/2

(ˆ
�\A(t)

u(t)2 dμg

)1/2

+ C
(
T , ‖u0‖H1(�)

)

≤
√
1 − C

(
T , ‖u0‖H1(�)

)−1 ‖u(t)‖L2(�) + C
(
T , ‖u0‖H1(�)

)
.
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Then, by Poincaré inequality, we get

‖u(t)‖L2(�) ≤c
∥∥∇gu(t)

∥∥
L2(�)

+ |ū(t)|

≤c
∥∥∇gu(t)

∥∥
L2(�)

+
√
1 − C

(
T , ‖u0‖H1(�)

)−1 ‖u(t)‖L2(�)

+ C
(
T , ‖u0‖H1(�)

)
,

which implies the following L2-estimate

‖u(t)‖L2(�) ≤ C
(
T , ‖u0‖H1(�)

) (
1 + ∥∥∇gu(t)

∥∥
L2(�)

)
. (2.8)

Now, applying Young’s inequality to (2.3), we obtain

C ≥
ˆ

�

∣∣∇gu(t)
∣∣2
g dμg − ε

ˆ

�

u(t)2 dμg − Cε.

Choosing small ε, together with (2.8), we can conclude that

‖u(t)‖H1(�) ≤ C
(
T , ‖u0‖H1(�)

)
. (2.9)

Step 2

‖u(t)‖H2(�) +
(
´ T
0

∥∥∥ ∂u(t)
∂t

∥∥∥2
H1(�)

dt

)1/2

≤ C
(
T , ‖u0‖H2(�)

)
for any t ∈ [0, T ].

Set w(t) = e
u(t)
2

∂u(t)
∂t . Then

1

2

d

dt

ˆ

�

∣∣�gu(t)
∣∣2 dμg

=
ˆ

�

�gu(t)�g
∂u(t)

∂t
dμg

=
ˆ

�

(
e
u(t)
2 w(t) − 8π

(
heu(t)

´
�
heu(t) dμg

− 1

))
�g

(
e− u(t)

2 w(t)
)
dμg

= −
ˆ

�

∣∣∇gw(t)
∣∣2
g dμg + 1

4

ˆ

�

w(t)2
∣∣∇gu(t)

∣∣2 dμg

+ 8π
´
�
heu(t) dμg

ˆ

�

〈
e
u(t)
2
(∇gh + h∇gu(t)

)
,∇gw(t) − 1

2
w(t)∇gu(t)

〉
g
dμg.

According to (2.6) and (2.9), we know that

‖u(t)‖H1(�) + 1
´
�
heu(t) dμg

≤ C
(
T , ‖u0‖H1(�)

)
.

Therefore, Young’s inequality implies that

d

dt

ˆ

�

∣∣�gu(t)
∣∣2 dμg ≤ −

ˆ

�

∣∣∇gw(t)
∣∣2
g dμg

+
ˆ

�

w(t)2
∣∣∇gu(t)

∣∣2 dμg + C
(
T , ‖u0‖H1(�)

) (
1 + ∥∥∇gu(t)

∥∥2
L4(�)

)
.

Since for all f ∈ H1 (�), we have the following interpolation inequality

‖ f ‖2L4(�)
≤ c ‖ f ‖L2(�) ‖ f ‖H1(�) . (2.10)

123
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We estimate
ˆ

�

w(t)2
∣∣∇gu(t)

∣∣2 dμg ≤c ‖w(t)‖2L4(�)

∥∥∇gu(t)
∥∥2
L4(�)

≤c ‖w(t)‖L2(�) ‖w(t)‖H1(�) ‖u(t)‖H1(�) ‖u(t)‖H2(�)

≤C
(
T , ‖u0‖H1(�)

) ‖w(t)‖L2(�) ‖w(t)‖H1(�) ‖u(t)‖H2(�)

and∥∥∇gu(t)
∥∥2
L4(�)

≤ c ‖u‖H1(�) ‖u‖H2(�) ≤ C
(
T , ‖u0‖H1(�)

) ‖u‖H2(�) .

Hence

d

dt

ˆ

�

∣∣�gu(t)
∣∣2 dμg

≤ −1

2

ˆ

�

∣∣∇gw(t)
∣∣2
g dμg + 1

2

ˆ

�

w(t)2 dμg

+ C
(
T , ‖u0‖H1(�)

) ‖w(t)‖2L2(�)
‖u(t)‖2H2(�)

+ C
(
T , ‖u0‖H1(�)

) (
1 + ‖u‖H2(�)

)
≤ −1

4

ˆ

�

∣∣∇gw(t)
∣∣2
g dμg + C

(
T , ‖u0‖H1(�)

)

×
(
1 + ‖w(t)‖2L2(�)

) (
1 + ∥∥�gu(t)

∥∥2
L2(�)

)
.

Thus

d

dt
ln

(
1 + ∥∥�gu(t)

∥∥2
L2(�)

+
ˆ t

0

ˆ

�

∣∣∇gw(τ)
∣∣2
g dμg dτ

)

≤ C
(
T , ‖u0‖H1(�)

) (
1 + ‖w(t)‖2L2(�)

)
.

Together with u0 ∈ H2(�), we obtain

ln

(
1 + ∥∥�gu(t)

∥∥2
L2(�)

+
ˆ T

0

ˆ

�

∣∣∇gw(τ)
∣∣2
g dμg dτ

)

≤ C
(
T , ‖u0‖H2(�)

)+ C
(
T , ‖u0‖H1(�)

)ˆ T

0

(
1 + ‖w(t)‖2L2(�)

)
dt .

By (2.2), we know that

ˆ T

0
‖w(t)‖2L2(�)

dt =
ˆ T

0

ˆ

�

eu(t)
∣∣∣∣∂u(t)

∂t

∣∣∣∣
2

dμg dt = J (u(0) − J (u(T ))) ≤ C .

Consequently, by using Sobolev embedding, we conclude

‖u(t)‖H2(�) +
(ˆ T

0

∥∥∥∥∂u(t)

∂t

∥∥∥∥
2

H1(�)

dt

)1/2

≤ C
(
T , ‖u0‖H2(�)

)
.

Step 3
(
´ T
0

∥∥∥ ∂2u
∂t2

∥∥∥2
H−1(�)

dt

)1/2

≤ C
(
T , ‖u0‖H2(�)

)
for any t ∈ [0, T ].

123
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Differential the Eq. (1.5) with respect to t , we get

euü + euu̇2 = �u̇ + 8π

(
heuu̇

´
�
heu dμg

− heu
´
�
heuu̇ dμg(´

�
heu dμg

)2
)

where ü = ∂2u
∂t2

and u̇ = ∂u
∂t . Then for all ψ ∈ H1(�) with ‖ψ‖H1(�) ≤ 1, we have

ˆ

�

üψ dμg =
ˆ

�

e−u

(
�u̇ + 8π

(
heuu̇

´
�
heu dμg

− heu
´
�
heuu̇ dμg(´

�
heu dμg

)2
))

ψ dμg

−
ˆ

�

|u̇|2ψμg

= −
ˆ

�

〈∇gu̇,−∇guψ + ∇gψ
〉
g e

−u dμg

+
ˆ

�

8π

(
hu̇

´
�
heu dμg

− h
´
�
heuu̇ dμg(´

�
heu dμg

)2
)

ψ dμg −
ˆ

�

|u̇|2ψμg

≤C
(
T , ‖u0‖H2(�)

) ‖u̇‖H1(�).

Thus ‖ü(t)‖H−1(�) ≤ C
(
T , ‖u0‖H2(�)

) ∥∥ ˙u(t)
∥∥
H1(�)

which implies the desired
estimate.

Since we have the following embedding (cf. [16, page 304, Theorem 2] and [16, page
305, Theorem 3])

C
(
0, T ; H1 (�)

) ⊂ H1 (0, T ; H1 (�)
)
, C

(
0, T ; L2 (�)

)
⊂ L2 (0, T ; H1 (�)

) ∩ H1 (0, T ; H−1 (�)
)
,

we get

u ∈ ∩0<T<∞
(
L∞ (

0, T ; H2 (�)
) ∩ H1 (0, T ; H1 (�)

) ∩ H2 (0, T ; H−1 (�)
)

∩C (
0, T ; H1 (�)

) ∩ C1 (0, T ; L2 (�)
))

.

By using the parabolic Sobolev embedding theorems (cf. [6, pages 368–369]) together with
the interpolation inequality (2.10), we get

u ∈ ∩0<T<∞W 2,1
4 (� × [0, T ]) ⊂ ∩0<T<∞Cα,α/2 (� × [0, T ]) , ∀0 < α < 1.

Here W 2,1
p (� × [0, T ]) = L p

(
0; T ;W 2,p (�)

)∩W 1,p (0, T ; L p (�)) stands for the usual
parabolic Sobolev space.

Then the standard regularity theory for parabolic equation gives

‖u(t)‖C2+k+α,(2+k+α)/2(�×[0,T ]) ≤ C
(
T , k, ‖u0‖C2+k+α(�)

)
for all integer number k ≥ 0. In particular, we can extend this flow to infinity and u is smooth
in � × (0,∞).

Now assume u0 ∈ H2 (�) and choose a sequence of smooth functions u0,ε on � such
that u0,ε converges to u0 in H2 (�) as ε → 0. Let uε be the unique smooth solution to

⎧⎨
⎩

∂euε

∂t
= �guε + 8π

(
heuε

´
�
heuε dμg

− 1

)
, � × (0,∞),

uε(·, 0) = u0,ε, �.
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The a prior estimates (1.6) gives the following estimates

ess sup0≤t≤T ‖uε(t)‖H2(�) +
(ˆ T

0

(∥∥∥∥∂uε(t)

∂t

∥∥∥∥
2

H1(�)

+
∥∥∥∥∂2uε(t)

∂t2

∥∥∥∥
2

H−1(�)

)
dt

)1/2

≤ C
(
T , ‖u0‖H2(�)

)
, ∀0 < T < ∞.

Thus we obtain a solution u ∈ C∞ (� × (0,∞)) to (1.5) with

u ∈ ∩0<T<∞
(
L∞ (

0, T ; H2 (�)
) ∩ H1 (0, T ; H1 (�)

)
∩H2 (0, T ; H−1 (�)

))
and the desired a priori estimates (1.6).

To prove the uniqueness of the solution, we assume that u and v are two solutions to (1.5)
with initial data u0 and v0 respectively. Denote w = u − v. By direct computations, we have

a
∂w

∂t
= �gw + f − bw (2.11)

where

a =
ˆ 1

0
esu+(1−s)v ds, b =

ˆ 1

0
esu+(1−s)v

(
s
∂u

∂t
+ (1 − s)

∂v

∂t

)
ds = ∂a

∂t
,

f =8π
ˆ 1

0

hesu+(1−s)v
´
�
hesu+(1−s)v dμg

w ds − 8π
ˆ 1

0

hesu+(1−s)v
´
�
hesu+(1−s)vw dμg(´

�
hesu+(1−s)v dμg

)2 ds.

One can check that there is a constant C depends only on T , ‖u0‖H2(�) and ‖u0‖H2(�) such
that for all 0 ≤ t ≤ T

C−1 ≤a(t) ≤ C, |b(t)| ≤ C

(∣∣∣∣∂u(t)

∂t

∣∣∣∣+
∣∣∣∣∂v(t)

∂t

∣∣∣∣
)

,

| f (t)| ≤C
(|w(t)| + ‖w(t)‖L2(�)

)
,

ˆ

�

f (t)w(t) ≤ C
ˆ

�

w(t)2.

Then we obtain

d

dt

ˆ

�

a(t)w(t)2 dμg =
ˆ

�

b(t)w(t)2 dμg + 2
ˆ

�

a(t)w(t)
∂w(t)

∂t
dμg

= − 2
ˆ

�

∣∣∇gw(t)
∣∣2
g dμg + 2

ˆ

�

f (t)w(t) dμg −
ˆ

�

b(t)w(t)2 dμg

≤ −
ˆ

�

∣∣∇gw(t)
∣∣2
g dμg + C

ˆ

�

a(t)w(t)2 dμg.

Gronwall’s inequality implies
ˆ

�

w(t)2 dμg ≤C
ˆ

�

a(t)w(t)2 dμg ≤ Cet
ˆ

�

a(0)w(0)2 dμg

=Cet ‖u0 − v0‖2L2(�)
, ∀0 < t < T . (2.12)

The uniqueness then follows from the above inequality and we finish the proof. ��
Remark 2.1 One check that the difference of two solutions u and v satisfies

‖u − v‖W 2,1
2 (�×[0,T ]) ≤ C

(
T , ‖u0‖H2(�) , ‖v0‖H2(�)

) ‖u0 − v0‖H2(�) .
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The proof is standard. Roughly speaking, (2.11) implies
∣∣∣∣a1/2 ∂w

∂t
− a−1/2�g

∣∣∣∣
2

= a

∣∣∣∣∂w

∂t

∣∣∣∣
2

+ a−1
∣∣�gw

∣∣2 − 2

〈
∂w

∂t
,�gw

〉
g
.

Integration by parts,

ˆ

�

(
a

∣∣∣∣∂w

∂t
w

∣∣∣∣
2

+ a−1
∣∣�gw

∣∣2
)
dμg + d

dt

ˆ

�

∣∣∇gw
∣∣2
g dμg

≤ C
ˆ

�

|w|2 dμg + C

(ˆ
�

|b|4 dμg

)1/2 (ˆ
�

|w|4 dμg

)1/2

.

Applying the interpolation inequality (2.10) and the L2-estimate (2.12) of the w, we have

ˆ T

0

ˆ

�

(
a

∣∣∣∣∂w

∂t
w

∣∣∣∣
2

+ a−1
∣∣�gw

∣∣2
)
dμg dt + max

0≤t≤T

ˆ

�

∣∣∇gw(t)
∣∣2
g dμg

≤ C
ˆ

�

|u0 − v0|2 dμg

where the constant C depends only on T , ‖u0‖H2(�) and ‖v0‖H2(�).

3 Blowup analysis

In this section, we prove an estimate of a Dirac measure at the blowup points. Consequently,
we show the fact that the flow develops at most one blowup point when the time goes to
infinity.

According to (2.2) and (2.5), we know that
ˆ ∞

0

ˆ

�

eu(t)
∣∣∣∣∂u(t)

∂t

∣∣∣∣
2

dμg dt ≤ C .

There is a sequence of positive numbers {tn} such that n ≤ tn ≤ n + 1 and

lim
n→∞

ˆ

�

eu(tn)
∣∣∣∣∂u(tn)

∂t

∣∣∣∣
2

dμg = 0.

Set

un = u(tn), Vn = 8πh
´
�
heun dμg

, ρ = 8π, fn = eun/2
∂u(tn)

∂t
, (3.1)

then

−�gun = Vne
un − ρ − fne

un/2, in �, (3.2)

and un, Vn, ρ, fn are smooth functions on � satisfying

ρ > 0, 0 ≤ Vn ≤ C, lim
n→∞ ‖ fn‖L2(�) = 0. (3.3)

One can check that
ˆ

�

eun dμg ≤ C . (3.4)
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We say that a sequence {un} which satisfies (3.2) and (3.3) is a blowup sequence if
lim sup
n→∞

max
�

un = +∞.

Lemma 3.1 If {un} is not a blowup sequence, then {un} is bounded in H2 (�).

Proof By definition,
{
u+
n

}
is bounded in L∞ (�). By the standard elliptic estimates and

the normalization
´
�
dμg = 1, we conclude that {un − ūn} is bounded in H2 (�), where

ūn := ū(tn) = ´
�
u(tn) dμg . By Jensen’s inequality, according to (3.4), we have ūn ≤

C . It suffices to prove that ūn ≥ −C . Otherwise, there is a subsequence
{
unk

}
such that

limnk→∞ ūnk = −∞. Notice that

−�g
(
unk − ūnk

) = Vnk e
ūnk eunk −ūnk − ρ − fnk e

ūnk /2e
(
unk −ūnk

)
/2, in �.

We may assume unk − ūnk converges weakly to û in H2 (�) and strongly in L1 (�). Then{
ep

(
unk −ūnk

)}
converges strongly to epû in L1 (�) for each p > 0. Thus û is a weak solution

to

−�gû = −ρ.

It is well know that û ∈ C∞ (�) and ρ = 0 which is a contradiction. Therefore, {un} is
bounded in H2 (�). ��

From now on, we assume {un} is a blowup sequence. Since {Vneun } is bounded in L1 (�),
we may assume

{
Vneun dμg

}
converges to a nonzero Radon measure μ on � in the sense of

measures. By using the method of potential estimates (cf. [20, Lemma 7.12]), we get

‖un − ūn‖W 1,p(�) ≤ Cp, ∀1 ≤ p < 2.

We may assume {un − ūn} converges weakly to G in W 1,p (�) and strongly in L p (�) for
every 1 < p < 2. Hence G satisfies{

−�gG = μ − ρ, in �,
´
�
G dμg = 0,

in the sense of distribution. Define the singular set S of the sequence {un} as follows
S = {x ∈ � : μ ({x}) ≥ 4π.}

It is easy to check that S is a finite nonempty subset of �.
Recall Brezis-Merle’s estimate ([2, Theorem 1]).

Lemma 3.2 (cf. [12]) Let � ⊂ � be a smooth domain. Assume u is a solution to{
−�gu = f , in �,

u = 0, on ∂�,

where f ∈ L1 (�). For every 0 < δ < 4π , there is a constant C depending only on δ and �

such that
ˆ

�

exp

(
(4π − δ) |u|
‖ f ‖L1(�)

)
dμg ≤ C .

As a consequence, we have the following Lemma (cf. [12, Lemma 2.8]).
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Lemma 3.3 If x /∈ S, then there is a geodesic ball Bg
r (x) ⊂ �\S and a positive constant

C = Cx such that

‖un − ūn‖L∞(
Bg
r (x)

) ≤ C .

Proof There exist δ = δx ∈ (0, 2π) , r = rx ∈ (0, inj (�) /4) , N = Nx ∈ N such that
ˆ

Bg
4r (x)

∣∣Vneun − fne
un/2

∣∣ dμg ≤ 4π − 2δ, ∀n ≥ N .

Solve {
−�g yn = −ρ, in Bg

4r (x),

yn = 0, on ∂Bg
4r (x).

It is well know that {yn} is bounded in L∞ (
Bg
4r (x)

)
. Solve

{
−�gwn = Vneun − fneun/2, in Bg

4r (x),

wn = 0, on ∂Bg
4r (x).

(3.5)

According to Lemma 3.2, we have
∥∥∥e|wn |

∥∥∥
L p
(
Bg
4r (x)

) ≤ C, p = 4π − δ

4π − 2δ
> 1.

In particular, {wn} is bounded in L1
(
Bg
4r (x)

)
. Since hn := un − ūn − yn − wn is harmonic

in Bg
4r (x), we have

‖hn‖L∞(
Bg
2r (x)

) ≤C ‖hn‖L1
(
Bg
4r (x)

)

≤C
(
‖un − ūn‖L1

(
Bg
4r (x)

) + ‖yn‖L1
(
Bg
4r (x)

) + ‖wn‖L1
(
Bg
4r (x)

))

≤C
(
‖un − ūn‖L1(�) + ‖wn‖L1

(
Bg
4r (x)

) + ‖yn‖L1
(
Bg
4r (x)

))

≤C .

Thus ∥∥eun∥∥L p
(
Bg
2r (x)

) ≤ C .

Applying the standard elliptic estimates for (3.5), we get

‖wn‖L∞(
Bg
r (x)

) ≤ C .

Hence

‖un − ūn‖L∞(
Bg
r (x)

) ≤ C .

��
Theorem 3.4 If {un} is a blowup sequence, then S is nonempty and

S =
{
x ∈ � : ∃ {xn} ⊂ �, lim

n→∞ xn = x, lim
n→∞ un (xn) = +∞.

}

Moreover limn→∞ ūn = −∞. Thus {un} converges to −∞ uniformly on compact subsets of
�\S and μ = ∑

x∈S μ ({x}) δx is a Dirac measure.
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Proof According to Lemma 3.3, we know that {un − ūn} is bounded in L∞
loc (�\S).

If S = ∅, then {un − ūn} is bounded in L∞ (�) which implies that
{
u+
n

}
is bounded in

L∞ (�) which is a contradiction.
We claim that limn→∞ ūn = −∞. Otherwise, there is a subsequence of {un} which also

denoted by {un} such that

ūn ≥ −C .

For x ∈ S, choose r > 0 such that Bg
2r (x) ∩ S = {x}. According to Lemma 3.3, {un} is

bounded in L∞
loc

(
Bg
2r (x)\ {x}). In particular, M := supn ‖un‖L∞(

∂Bg
r (x)

) < ∞. Solve

{
−�gzn = Vneun − ρ − fneun/2, in Bg

r (x),

zn = −M, on Bg
r (x).

By potential estimates, we know that zn is bounded in W 1,p
(
Bg
r (x)

)
for all 1 < p < 2.

Thus, up to a subsequence, zn converges weakly to z ∈ W 1,p
(
Bg
r (x)

)
for all 1 < p < 2 and

strongly in Lq
(
Bg
r (x)

)
for all 1 < q < ∞. Then z is a weak solution to
{

−�gz = μ ({x}) δx − ρ, in Bg
r (x),

z = −M, on Bg
r (x).

Thus

z(·) ≥ −μ ({x})
2π

ln distg(·, x) − C .

Since μ ({x}) ≥ 4π , we get
ˆ

Bg
r (x)

ez dμg = ∞.

On the other hand, the maximum principle implies that zn ≤ un . By Fatou’s Lemma,

∞ =
ˆ

Bg
r (x)

ez dμg ≤ lim inf
n→∞

ˆ

Bg
r (x)

ezn dμg ≤ lim inf
n→∞

ˆ

Bg
r (x)

eun dμg ≤ C,

which is a contradiction.
Hence {un} converges to −∞ uniformly on compact subsets of �\S. Thus for every

domain � ⊂ �

μ (�) = lim
n→∞

ˆ

�

Vne
un dμg

=
∑
x∈S

lim
r→0

lim
n→∞

ˆ

�\Bg
r (x)

Vne
un dμg +

∑
x∈S

lim
r→0

lim
n→∞

ˆ

�∩Bg
r (x)

Vne
un dμg

=
∑

x∈S∩�

lim
r→0

lim
n→∞

ˆ

Bg
r (x)

Vne
un dμg

=
∑

x∈S∩�

μ ({x})

=μ (� ∩ S) .

In other words, μ = ∑
x∈S μ ({x}) δx is a Dirac measure.
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According to Lemma 3.3, we obtain{
x ∈ � : ∃ {xn} ⊂ �, lim

n→∞ xn = x, lim
n→∞ un (xn) = +∞.

}
⊂ S.

For x0 ∈ S, choose a geodesic ball Bg
2r (x0) such that Bg

2r (x0) ∩ S = {x0}. Choose xn ∈
Bg
r (x0) such that

λn := max
B�
r (x0)

un = un (xn) .

Fact 1. limn→∞ λn = ∞.

Otherwise, up to a subsequence,
{
u+
n

}
is bounded in L∞ (

Bg
r (x0)

)
. Thus {eun } is

bounded in L∞ (
Bg
r (x0)

)
which is a contradiction.

Fact 2. limn→∞ xn = x0.

Otherwise, up to a subsequence, limn→∞ xn = x̃ ∈ Br (x0)\ {x0}. Thus x̃ is not a
singular point which is impossible according Lemma 3.3 and the above claim.

Consequently,

S ⊂
{
x ∈ � : ∃ {xn} ⊂ �, lim

n→∞ xn = x, lim
n→∞ un (xn) = +∞.

}

��
Now we want to prove that μ ({x0}) ≥ 8π . We assume additionally that Vn converges to

V in C0 (�).

Lemma 3.5 For each x0 ∈ S, we have V (x0) > 0 and μ ({x0}) ≥ 8π .

Proof The proof is similar to [25, Lemma 1]. Assume Bg
2r (x0) ∩ S = {x0}. Choose xn ∈

Bg
2r (x0) such that

λn := max
Bg
r (x0)

un = un (xn) .

It is easy to check that

lim
n→∞ λn = +∞, lim

n→∞ xn = x0.

Now choose a conformal coordinate {x} centered at x0. We have g = eφ(x) |dx |2 and
−�R2un = Vne

φeun − eφρ − fne
φeun/2, |x | < 2r̃ .

Consider

ũn(x) = un
(
xn + e−λn/2x

)− λn,

then for |x | < eλn/2r̃ ,

−�R2 ũn(x) =Vn
(
xn + e−λn/2x

)
eφ
(
xn+e−λn/2x

)
eũn(x)

− eφ
(
xn+e−λn/2x

)
ρ − fn

(
xn + e−λn/2x

)
eφ
(
xn+e−λn/2x

)−λn/2eũn(x)/2.

We have ũn ≤ 0, ũn(0) = 0 and
ˆ

Beλn/2 r̃

eũn dμR2 ≤
ˆ

Bg
2r̃ (x0)

eun dμg ≤ C,
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ˆ

Beλn/2 r̃

∣∣∣ fn (xn + e−λn/2x
)
eφ
(
xn+e−λn/2x

)−λn/2
∣∣∣2 dμR2 ≤

ˆ

Bg
2r̃ (x0)

f 2n dμg → 0.

Thus up to a subsequence, {ũn} converges weakly to ũ∞ in H2
loc

(
R
2
)
and strongly in

H1
loc

(
R
2
)
. In particular, ũ∞ is a weak solution to

{
−�R2 ũ∞ = V (x0)eφ(0)eũ∞ , in R

2,
´
R2 eũ∞ dμR2 < ∞.

By a classification theorem of Chen-Li [11], we know that
ˆ

R2
V (x0)e

φ(0)eũ∞ dμR2 = 8π.

In particular V (x0) > 0. By Fatou’s Lemma, we have
ˆ

R2
V (x0)e

φ(0)eũ∞ dμR2 = lim
R→∞

ˆ

BR

V (x0)e
φ(0)eũ∞ dμR2

≤ lim
R→∞ lim inf

n→∞

ˆ

BR

Vn
(
xn + e−λn/2x

)
eφ
(
xn+e−λn/2x

)
eũn(x) dμR2

= lim
R→∞ lim inf

n→∞

ˆ

Bg

e−λn/2R
(xn)

Vn
(
xn + e−λn/2x

)
eun dμg

≤ lim
r→0

lim inf
n→∞

ˆ

Bg
r (x0)

Veun dμg

=μ ({x0}) .

Thus

μ ({x0}) ≥ 8π.

In our initial model (3.1), we must have μ ({x0}) = 8π and #S = 1. Moreover,

V = lim
n

Vn = lim
n→∞

8πh
´
�
heun dμg

= 8πh

h(x0)
´
�
eu0 dμg

and h(x0) > 0.

4 Lower bound for the functional

In this section, we give a lower bound for J (u(t)) along the flow, i.e. we give the proof of
Theorem 1.2.

Proof of Theorem 1.2 Suppose our flow develops a singularity as time goes to infinity, we
will analyse the asymptotic behavior of the flow near and away from the blow-up point and
derive a lower bound of J (u). From the previous compactness argument, there is only one
blow-up point when ρ = 8π , denoted by x0. Then there is a sequence of points {xn} such
that

lim
n→∞ xn = x0, λn = un(xn) = max

�
un = max

�
u(tn) = +∞,
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where tn → ∞ as n → ∞. In an isothermal coordinate system {x} around x0, we still denote
un and xn in this coordinate by un and xn , respectively. Set rn = e−λn/2 and

ũn := un (xn + rnx) − λn .

Then we have ũn weakly converges to ũ∞ satisfying

ũ∞ = −2 ln
(
1 + a|x |2) , a = πeφ(0)

´
�
eu0 dμg

and

lim
n→∞

1

2

ˆ

Bg
rn R

(xn)
|dun |2gdμg = lim

n→∞
1

2

ˆ

BR(xn)
|dũn|2dμR2

= π

ˆ R

0

∣∣∣∣ 4ar

1 + ar2

∣∣∣∣
2

rdr

= 8π
ˆ aR2

0

s

(1 + s)2
ds

= 8π
ˆ aR2

0

(
1

1 + s
− 1

(1 + s)2

)
ds

= 8π

(
ln(1 + aR2) + 1

1 + aR2 − 1

)

= 8π ln(aR2) − 8π + oR(1).

(4.1)

Here and in the following, we use oR(1), on(1), oδ(1) to denote those functions which con-
verges to zero as R → +∞, n → ∞, δ → 0 respectively.

Since un − ūn converges to G weakly in W 1,p(�) for 1 < p < 2 and strongly in
H2
loc(�\{x0}) (see Proposition 3.5 in [23]) and G satisfies

{
−�gG = 8π(δx0 − 1), �,
´
�
Gdμg = 0.

we get

lim
n→∞

1

2

ˆ

�\Bg
δ (xn)

|dun |2dμg = lim
n→∞

1

2

ˆ

�\Bg
δ (x0)

|dun |2dμg

= 1

2

ˆ

�\Bg
δ (x0)

|dG|2dμg

= −1

2

ˆ

�\Bg
δ (x0)

G�gGdμg − 1

2

ˆ

∂Bg
δ (x0)

G
∂

∂ν
Gdμg

= 4π
ˆ

Bg
δ (x0)

G dμg − 1

2

ˆ

∂Bg
δ (x0)

G
∂

∂ν
Gdμg,

where ν is the normal vector field on ∂Bg
δ (x0) pointing to the complement of Bg

δ (x0).
In normal coordinate, G has the following expansion

G(x) = −4 ln |x − x0| + A (x0) + (b, x − x0) + (x − x0)
T c (x − x0) + O

(|x − x0|3
)
.
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Then

lim
n→∞

1

2

ˆ

�\Bg
δ (xn)

|dun |2dμg = −16π ln δ + 4π A (x0) + oδ(1). (4.2)

Define

u∗
n(r) = 1

2π

ˆ 2π

0
un
(
xn + reiθ

)
dθ.

Then for rn R ≤ r < s ≤ δ, we have (cf. [24, equation (3.4)])
ˆ

Bs\Br
|du∗

n |2dx ≤
ˆ

Bs\Br

∣∣∣∣∂un∂r

∣∣∣∣
2

dx .

Notice that

lim
n→∞

(
u∗
n (rn R) + 2 ln rn

) = − 2 ln
(
1 + aR2) = −2 ln

(
aR2)+ oR(1),

lim
n→∞

(
u∗
n(δ) − ūn

) = 1

2π

ˆ 2π

0
G
(
δeiθ

)
dθ = −4 ln δ + A (x0) + oδ(1).

(4.3)

Let wn be the harmonic functions in the neck domains Bg
δ (xn)\Bg

rn R
(xn) such that

wn |∂Bg
δ (xn)

= u∗
n(δ), wn |∂Bg

rn R
(xn)

= u∗
n (rn R) .

Then we have

1

2

ˆ

Bg
δ (xn)\Bg

rn R
(xn)

|dun |2dμg ≥ 1

2

ˆ

Bg
δ (xn)\Bg

rn R
(xn)

|du∗
n |2dμg

≥ 1

2

ˆ

Bg
δ (xn)\Bg

rn R
(xn)

|dwn |2dμg

≥ π(u∗
n(δ) − u∗

n(rn R))2

ln δ − ln(rn R)
.

Set τn := u∗
n(δ) − u∗

n(rn R) − ūn − 2 ln rn . It follows from (4.3) that

lim
n→∞ τn = −4 ln δ + A (x0) + 2 ln

(
aR2)+ oR(1) + oδ(1).

Then we get

1

2

ˆ

Bg
δ (xn)\Bg

rn R
(xn)

|dun |2dμg ≥ π (τn + ūn + 2 ln rn)2

− ln rn

(
1 − ln (R/δ)

− ln rn

)−1

≥ π (τn + ūn − 2 ln rn)2

− ln rn
− 8π ūn + 32π ln δ − 8π A(x0)

− 16 ln(aR2)

+ π

(
2 + τn

ln rn
+ ūn

ln rn

)2

ln(R/δ) + oR(1) + oδ(1)

(4.4)
for large n.

Thus, (4.1), (4.2) and (4.4) give us

J (un) ≥ 8π ln
(
aR2)− 8π − 16π ln δ + 4π A(x0) + 8π

(
ūn − ln h(x0) − ln

ˆ

�

eu0 dμg

)
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+ π (τn + ūn − 2 ln rn)2

− ln rn
− 8π ūn + 32π ln δ − 8π A (x0) − 16 ln

(
aR2)

+ π

(
2 + τn

ln rn
+ ūn

ln rn

)2

ln(R/δ) + oR(1) + oδ(1) + on(1)

= −4π(A(x0) + 2 ln h(x0)) − 8π ln π − 8π + oR(1) + oδ(1) + on(1)

+ π (τn + ūn − 2 ln rn)2

− ln rn
+ π

[(
2 + τn

ln rn
+ ūn

ln rn

)2

− 16

]
ln(R/δ).

Since J (un) ≤ J (u0), we have limn→∞ ūn → 2 ln rn . Hence,

lim
n→∞ J (un) ≥ −4π max

x∈�
(A(x) + 2 ln h(x)) − 8π ln π − 8π.

By the monotonicity formula (2.2), we conclude that

J (u(t)) ≥ C0 = −4π max
x∈�

(A(x) + 2 ln h(x)) − 8π ln π − 8π, ∀t ≥ 0.

��

5 Global convergence

Proof of Theorem 1.3 Notice that there is a sequence of positive numbers {tn} such that n ≤
tn ≤ n + 1 and

lim
n→∞

ˆ

�

eu(tn)
∣∣∣∣∂u(tn)

∂t

∣∣∣∣
2

dμg = 0.

By the lower bound of J along the flow stated in Theorem 1.2, the existence of mean field
Eq. (1.1) is reduced to construct a function whose value under J is strictly less than C0. In
fact, such kind of functions were constructed in [12] provided that

�gh (p0) + 2 (b1 (p0) k1 (p0) + b2 (p0) k2 (p0))

> − (
8π + b21(p0) + b22 (p0) − 2K (p0)

)
h (p0) ,

where K (x) is the Gaussian curvature of �, ∇h(p0) = (k1(p0), k2(p0)) in the normal
coordinate system, p0 is the maximum point of A(q) + 2 ln h(q) and b1(p0), b2(p0) are the
constants in the following expression of Green function G:

G (x, p0) = −4 ln r + A (p0) + b1 (p0) x1 + b2 (p0) x2

+ c1x
2
1 + 2c2x1x2 + c3x

2
2 + O

(
r3
)
,

where r(x) = distg(x, p0). The sequence {un} can not blowup by our assumption. By
Lemma3.1, {un} is bounded in H2(�) and there is a functionu∞ ∈ H2(�) and a subsequence{
unk

}
of {un} such that

unk → u∞ weakly in H2(�)

and

unk → u∞ in Cα(�)
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for α ∈ (0, 1) as nk → ∞. It is easy to see that u∞ is a smooth solution to

−�gu∞ + 8π = 8π
heu∞

´
�
heu∞ dμg

.

To obtain the strong convergence for
{
unk

}
, please notice that

ˆ

�

(
�gunk − �gu∞

)2

=
ˆ

�

(
∂eunk

∂t
+ 8π

(
heu∞

´
�
heu∞ dμg

− heunk
´
�
heunk dμg

))2

dμg

≤ C
ˆ

�

(
eu∞ − eunk

)2 dμg + C
ˆ

�

∣∣∣∣∂unk∂t

∣∣∣∣
2

eunk dμg → 0

as nk → +∞.
We use Łojasiewicz-Simon gradient inequality to get the global convergence of the flow.

When h > 0, one can refer to [4] for non-critical cases, i.e. ρ �= 8kπ and [23] for ρ = 8π .
In both papers, the authors just provided the paper by Simon [29] and no more details were
given. In this section, we give a detailed proof and some references. We divide the proof of
the global convergence to several steps.

Step 1∥∥u(t)+
∥∥
L∞(�)

≤ C .

Since

∂u

∂t
≤ e−u�gu + C .

Applying the maximum principle, we have d
dt (max� u(t) − Ct) ≤ 0. By using the

fact {un} is bounded in L∞ (�) and n ≤ tn ≤ n + 1, we conclude that u(t)+ is
bounded in L∞ (�).

Step 2

‖u(t)‖H1(�) ≤ C .

Denote

A(t) =
{
x ∈ � : eu(t) ≥ 1

2

ˆ

�

eu0 dμg

}
.

Then
ˆ

A(t)
u(t) dμg ≥ ln

(
1

2

ˆ

�

eu0 dμg

)
|A(t)|g ≥ −C,

and
ˆ

A(t)
u(t) dμg ≤

ˆ

A(t)
eu(t) ≤

ˆ

�

eu(t) =
ˆ

�

eu0 ≤ C .

Thus ∣∣∣∣
ˆ

A(t)
u(t) dμg

∣∣∣∣ ≤ C .
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Notice that
ˆ

�

eu0 dμg =
ˆ

�

eu(t) dμg

=
ˆ

�\A(t)
eu(t) dμg +

ˆ

A(t)
eu(t) dμg

≤1

2

ˆ

�

eu0 dμg + C |A(t)|g

=1

2

ˆ

�

eu(t) dμg + C |A(t)|g ,

we get

|A(t)|g ≥ C−1.

By Poincaré inequality,

‖u(t)‖L2(�) ≤C
∥∥∇gu(t)

∥∥
L2(�)

+ |ū(t)|

≤C
∥∥∇gu(t)

∥∥
L2(�)

+
∣∣∣∣
ˆ

A(t)
u(t) dμg

∣∣∣∣+
∣∣∣∣
ˆ

�\A(t)
u(t) dμg

∣∣∣∣
≤C

∥∥∇gu(t)
∥∥
L2(�)

+ C +
√

|�\A(t)|g ‖u(t)‖L2(�) .

Hence

‖u(t)‖L2(�) ≤C
∥∥∇gu(t)

∥∥
L2(�)

+ C .

Notice that

1

2

ˆ

�

∣∣∇gu(t)
∣∣2
g dμg = J (u(t)) − 8π ū(t) + 8π ln

ˆ

�

heu(t) dμg ≤ C + Cū(t).

By Young’s inequality, we conclude that

‖u(t)‖H1(�) ≤ C .

Step 3

limt→∞
´
�
eu(t)

∣∣∣ ∂u(t)
∂t

∣∣∣2 dμg = 0.

We will follow the argument of Brendle [1] (see also [4]). For every ε > 0, there
exist k0 such that for all k ≥ k0

ˆ

�

eu
(
tnk

) ∣∣∣∣∣
∂u

(
tnk
)

∂t

∣∣∣∣∣
2

dμg < ε.

Assume for all k ≥ k0,

mk = inf

{
t > tnk :

ˆ

�

eu(t)
∣∣∣∣∂u(t)

∂t

∣∣∣∣
2

dμg ≥ 2ε

}
< ∞.

For tnk ≤ t ≤ mk , we have
ˆ

�

eu(t)
∣∣∣∣∂u(t)

∂t

∣∣∣∣
2

dμg ≤ 2ε.
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Since u(t) is bounded in H1 (�) and u(t)+ is bounded in L∞ (�), we conclude
that

|�u(t)| ≤ Cε + C, ∀tnk ≤ t ≤ tmk .

Thus

‖u(t)‖L∞(�) ≤ C ‖u(t)‖H2(�) ≤ Cε, ∀tnk ≤ t ≤ mk .

Set

y(t) =
ˆ

�

eu(t)
∣∣∣∣∂u(t)

∂t

∣∣∣∣
2

dμg.

Denote by u̇ = ∂u
∂t , ü = ∂2u

∂t2
. Notice that

u̇ = e−u (�gu − 8π
)+ 8πh

´
�
heu dμg

.

We get

ü =e−u�gu̇ − u̇e−u (�gu − 8π
)− 8πh

´
�
heuu̇ dμg(´

�
heu dμg

)2
=e−u�gu̇ − u̇2 + 8πhu̇

´
�
heu dμg

− 8πh
´
�
heuu̇ dμg(´

�
heu dμg

)2 .

Hence

ẏ =
ˆ

�

(
euu̇3 + 2euu̇ü

)
dμg

= − 2
ˆ

�

∣∣∇gu̇
∣∣2 dμg −

ˆ

�

euu̇3 dμg + 16π

[´
�
heuu̇2 dμg´

�
heu dμg

−
(´

�
heuu̇ dμg´

�
heu dμg

)2
]

≤ − 2
ˆ

�

∣∣∇gu̇
∣∣2 dμg −

ˆ

�

euu̇3 dμg + Cy.

We estimate the second term in the RHS of the above inequality as follows: for all
tnk ≤ t ≤ mk ,

−
ˆ

�

euu̇3 dμg ≤C
ˆ

�

|u̇|3 dμg

≤C ‖u̇‖2L2(�)
‖u̇‖H1(�)

≤Cε y

(
y +

ˆ

�

∣∣∇gu̇
∣∣2
g dμg

)1/2

.

Since
´
�
euu̇ dμg = 0, applying the Poincaré inequality to obtain

ˆ

�

euu̇2 dμg ≤ 1

λ1,eug

ˆ

�

∣∣∇eugu̇
∣∣2
eug dμeug = 1

λ1,eug

ˆ

�

∣∣∇gu̇
∣∣2
g dμg

≤ C
ˆ

�

∣∣∇gu̇
∣∣2
g dμg.

123



Global existence and convergence of a flow… Page 23 of 26    42 

Thus for all tnk ≤ t ≤ mk ,

−
ˆ

�

euu̇3 dμg ≤ Cε y
1/2

(ˆ
�

∣∣∇gu̇
∣∣2
g dμg

)1/2

,

which implies

ẏ ≤ Cε y.

Hence

y
(
tmk

) ≤ y
(
tnk
)+ Cε

ˆ ∞

tnk

y(t) dt .

Thus

ε ≤ Cε

ˆ ∞

tnk

y(t) dt → 0, as tnk → ∞

which is a contradiction. Therefore

lim
t→∞

ˆ

�

eu(t)
∣∣∣∣∂u(t)

∂t

∣∣∣∣
2

dμg = 0.

Step 4

‖u(t)‖H2(�) ≤ C which implies that ‖u(t)‖Cγ (�) ≤ Cγ for every 0 < γ < 1.

This is a direct consequence of the standard elliptic estimates and Sobolev inequal-
ities.

Step 5

limt→∞ ‖u(t) − u∞‖L2(�) = 0 implies limt→∞ ‖u(t) − u∞‖H2(�) = 0.

Since

∂eu

∂t
= �g (u − u∞) + 8π

(
heu

´
�
heu dμg

− heu∞
´
�
heu∞ dμg

)
,

we get

∣∣�g (u(t) − u∞)
∣∣ ≤ C

(∣∣∣∣∂u(t)

∂t

∣∣∣∣+ |u(t) − u∞| + ‖u(t) − u∞‖L1(�)

)

which implies

‖u(t) − u∞‖H2(�) ≤ C

(∥∥∥∥∂u(t)

∂t

∥∥∥∥
L2(�)

+ ‖u(t) − u∞‖L2(�)

)
.

The claim follows by letting t → +∞.
Step 6

There are positive constants σ and θ ∈ (1/2, 1) such that

∀u ∈ H2 (�) , ‖u − u∞‖L2(�) < σ �⇒ |J (u) − J (u∞)|θ ≤ ‖M(u)‖L2(�) .
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Notice that the functional J : H1 (�) −→ R is analytic and the gradient map
M : H1 (�) −→ H−1 (�) is given by

u �→ M(u) = −�gu − 8π

(
heu

´
�
heu dμg

− 1

)
.

The Jacobi operator L : H1 (�) −→ H−1 (�) of J at a critical point u ∈ C∞ (�)

of J is given by

ξ �→ L(ξ) = −�gξ − 8π

(
heuξ

´
�
heu dμg

− heu
´
�
heuξ dμg(´

�
heu dμg

)2
)

is a Fredohom operator with index zero. SinceM (
H2 (�)

) ⊂ L2 (�), applying the
Łojasiewicz-Simon gradient inequality (cf. [21, Proposition 1.3] or [17, Theorem
2]), there are positive constants σ̃ and θ ∈ (1/2, 1) such that

∀u ∈ H2 (�) , ‖u − u∞‖H2(�) < σ̃ �⇒ |J (u) − J (u∞)|θ ≤ ‖M(u)‖L2(�) .

Hence we obtain this claim by choosing σ small.
Step 7

limt→∞ ‖u(t) − u∞‖L2(�) = 0 which gives the global convergence.

We will follow the approach of Jendoubi [21]. For every 0 < ε << σ , there exist
k1 such that for all k ≥ k1,

‖u (tk) − u∞‖L2(�) < ε.

Assume for all k ≥ k1,

sk = inf
{
t > tnk : ‖u(t) − u∞‖L2(�) ≥ σ

}
< ∞.

Then for all nk ≤ t < sk ,

‖u(t) − u∞‖L2(�) < σ = ‖u(sk) − u∞‖L2(�) .

Without loss of generality, assume J (u(t)) > J (u∞) for all t > 0. For tnk ≤ t < sk ,
we have

− d

dt
(J (u(t)) − J (u∞))1−θ = − (1 − θ) (J (u(t)) − J (u∞))−θ d

dt
J (u(t))

= (1 − θ) (J (u(t)) − J (u∞))−θ

∥∥∥∥eu(t)/2 ∂u(t)

∂t

∥∥∥∥
2

L2(�)

≥1 − θ

C

∥∥∥∥∂u(t)

∂t

∥∥∥∥
L2(�)

.

Thus
ˆ sk

tnk

∥∥∥∥∂u(t)

∂t

∥∥∥∥
L2(�)

dt ≤ C

1 − θ

(
J (u(tnk )) − J (u∞)

)1−θ
.

Since

d

dt
‖u(t) − u∞‖L2(�) ≤

∥∥∥∥∂u(t)

∂t

∥∥∥∥
L2(�)

,
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we get

σ = ‖u(sk) − u∞‖L2(�)

≤ ∥∥u(tnk ) − u∞
∥∥
L2(�)

+
ˆ sk

tnk

∥∥∥∥∂u(t)

∂t

∥∥∥∥
L2(�)

dt

≤ ∥∥u(tnk ) − u∞
∥∥
L2(�)

+ C

1 − θ

(
J (u(tnk )) − J (u∞)

)1−θ

which is a contradiction when nk → +∞. Hence we have sk2 = +∞ for some k2.
We conclude that

ˆ ∞

0

∥∥∥∥∂u(t)

∂t

∥∥∥∥
L2(�)

dt < +∞

which gives

lim
t→∞ ‖u(t) − u∞‖L2(�) = 0.

��
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