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−Δu = heu − f, (1.1)

where Δ is the Laplace-Beltrami operator. It comes from the prescribed Gaussian 
curvature problem [5,7,16], and also appears in various contexts such as the abelian 
Chern-Simons-Higgs models [3,20,21].

The existence of solutions to the Kazdan-Warner equation has been studied in recent 
decades. Denote by dμΣ the area element of Σ. If 

∫
Σ fdμΣ = 0 and h �≡ 0, then the 

Kazdan-Warner equation (1.1) is solvable [16] if and only if h changes sign and
∫
Σ

heφdμΣ < 0,

where φ is the unique solution to

−Δφ =
∫
Σ fdμΣ∫
Σ 1dμΣ

− f,

∫
Σ

φdμΣ = 0.

If 
∫
Σ fdμΣ �= 0, then the Kazdan-Warner equation (1.1) can be reduced to the following 

mean field equation

−Δu = ρ

(
heu∫

Σ heudμΣ
− 1∫

Σ 1dμΣ

)
(1.2)

where ρ ∈ R \ {0}. Many partial existence results of the mean field equation have been 
obtained for both noncritical and critical cases, see for examples Struwe and Tarantello 
[22], Ding, Jost, Li and Wang [8], Chen and Lin [6], Djadli [10] and the references therein.

If the prescribed function h is a positive function and ρ ∈ R \ 8πN∗, then every 
solution u with 

∫
Σ udμΣ = 0 to the mean field equation (1.2) is uniformly bounded. 

One can define the Leray-Schauder degree for equation (1.2) as follows (cf. [18, p. 422]). 
Given α ∈ (0, 1), consider

Xα =

⎧⎨
⎩u ∈ C2,α (Σ) :

∫
Σ

udμΣ = 0

⎫⎬
⎭ ,

and introduce a compact operator Kρ,h : Xα −→ Xα by

Kρ,h(u) = ρ (−Δ)−1
(

heu∫
Σ heudμΣ

− 1∫
Σ 1dμΣ

)
.

The Leray-Schahder degree is defined by

dρ = lim
R→+∞

deg
(
Id −Kρ,h, B

Xα

R , 0
)
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which is independent of α and h. Here BXα

R stands for the ball with center at the origin 
and radius R in the Banach space Xα equipped with the C2,α-norm. Li [18, p. 422]
pointed out that dρ should be determined by the Euler number χ (Σ) of Σ. Chen and 
Lin [6, Theorem 1.2] proved that

dρ =
(
k − χ (Σ)

k

)
,

where ρ ∈ (8kπ, 8(k + 1)π) and k ∈ N. As a consequence, if the genus of Σ is greater 
than zero, then the mean field equation (1.2) with positive prescribed function h always 
possesses a solution provided that ρ is not a multiple of 8π.

In this paper, we consider the following Kazdan-Warner equation on a connected finite 
graph G = (V, E):

−Δu(x) = h(x)eu(x) − c, x ∈ V, (1.3)

where Δ is the Laplace operator on G (see (2.1)), h is a real function on V and c is a real 
number. This equation was studied by several mathematicians (cf. [11–15,17,19]). For 
example, utilizing the variational method, Grigor’yan, Lin and Yang [13, Theorems 1-3]
obtained the following discrete analog of that of Kazdan and Warner [16]:

• when c = 0, (1.3) has a solution if and only if h ≡ 0 or h changes sign and 
∫
V
hdμ < 0;

• when c > 0, (1.3) is solvable if and only if maxV h > 0;
• when c < 0, if (1.3) has a solution, then 

∫
V
hdμ < 0, and in this case, there exists 

a constant ch ∈ [−∞, 0) depending on h such that (1.3) has a solution if c ∈ (ch, 0), 
but has no solution for any c < ch.

Grigor’yan, Lin and Yang [13, Theorem 4] pointed out that ch = −∞ if minV h <
maxV h ≤ 0. Ge [11] proved that ch > −∞ if h changes sign and obtained a solution for 
c = ch. Recently, Liu and Yang [19] studied the following Kazdan-Warner equation

−Δu = Kλe
u − κ (1.4)

where 
∫
V
κdμ < 0, Kλ = K+λ and minV K < maxV K = 0. They obtained the following 

discrete analog of that of Ding and Liu [9]: there exists a λ∗ ∈ (0, − minV K) such that 
(1.4) has a unique solution if λ ≤ 0, at least two distinct solutions if 0 < λ < λ∗, at least 
one solution if λ = λ∗, and no solution if λ > λ∗.

Our aim is to extend the results of Chen and Lin [6] to graphs. We shall prove that 
every solution to the Kazdan-Warner equation (1.3) is uniformly bounded whenever 
h �≡ 0. Consequently, the Brouwer degree dh,c for (1.3) can be well defined. We will give 
the exact formula for the Brouwer degree dh,c. Meanwhile, we will use the degree theory 
to recover some known existence results.
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The remaining part of this paper is briefly organized as follows. In Section 2 we recall 
some notions on a graph and state our main results. In Section 3 we recall some basic 
facts regarding functions on a connected finite graph. In Section 4 we study the blow-up 
behavior for the Kazdan-Warner equation and state a discrete analog of that of Brezis 
and Merle’s result in [2]. We will prove a compactness result for the Kazdan-Warner 
equation on a connected finite graph. In particular, we give a proof of Theorem 2.1. 
In Section 5 we compute the Brouwer degree for the Kazdan-Warner equation case by 
case (Theorem 2.3). In Section 6 we shall give new proofs of several known existence 
results by using the degree theory (Corollary 2.4 and Corollary 2.6). Hereafter we do 
not distinguish sequence and subsequence unless necessary. Moreover, we use the capital 
letter C to denote some uniform constants which are independent of the special solutions 
and not necessarily the same at each appearance.

2. Settings and main results

Throughout this paper, G = (V, E) is assumed to be a connected finite graph with 
vertex set V and edge set E. The edges on the graph are allowed to be weighted. Let 
ω : V × V −→ R be a weight function in the sense that ωxy = ωyx ≥ 0 and

ωxy > 0 ⇐⇒ xy ∈ E.

G is connected means that for every x, y ∈ V there exist xi ∈ V such that x = x1, y = xm

and

ωxixi+1 > 0, i = 1, . . . ,m− 1.

We say that G is finite if the number of vertices is finite. Denote by V R the set of 
real functions on V . Let μ be a positive function (vertex measure) on V and define the 
(μ-)Laplace operator Δ by

Δu(x) := 1
μx

∑
y∈V

ωxy (u(y) − u(x)) , x ∈ V, u ∈ V R. (2.1)

For any function f ∈ V R, an integral of f over V is defined by
∫
V

fdμ :=
∑
x∈V

f(x)μx.

We have the following Green formula:
∫
V

Δuvdμ = −
∫
V

Γ (u, v) dμ, (2.2)
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where Γ is the associated gradient form:

Γ(u, v)(x) := 1
2μx

∑
y∈V

ωxy (u(y) − u(x)) (v(y) − v(x)) . (2.3)

Let

|∇u| (x) :=
√

Γ(u, u)(x).

Denote by LP (V ) the space of all functions f ∈ V R with finite norm ‖f‖Lp(V ) which is 
defined by

‖f‖Lp(V ) :=
{(∫

V
|f |p dμ

)1/p
, 1 ≤ p < ∞,

ess supV |f | , p = ∞.

We also consider the Sobolev space W 1,p (V ) which consists of all functions f ∈ V R with 
finite norm ‖f‖W 1,p(V ) which is defined by

‖f‖W 1,p(V ) := ‖f‖Lp(V ) + ‖|∇f |‖Lp(V ) .

For every h, f ∈ V R, we consider the following functional

Jh,f (u) =
∫
V

(
1
2 |∇u|2 + fu− heu

)
dμ, u ∈ W 1,2 (V ) .

The critical points of Jh,f are exactly the solutions to the following (generalized) Kazdan-
Warner equation:

−Δu(x) = h(x)eu(x) − f(x), x ∈ V. (2.4)

We say that u is stable if
∫
V

(
|∇ξ|2 − heuξ2

)
dμ ≥ 0, ∀ξ ∈ V R,

and u is strictly stable if the equality holds only if ξ ≡ 0.
The first main theorem is the following a priori estimate.

Theorem 2.1. Let G = (V, E) be a connected finite graph with weight ω and measure μ. 
Assume that h ∈ V R and c ∈ R satisfy:

1) if c is positive, then h is positive somewhere;
2) if c equals to zero, then h changes sign and the integral of h over V is negative;
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3) if c is negative, then h is negative somewhere.

Then there exists a constant C depending only on h, c, G, ω and μ such that every solution 
u to the Kazdan-Warner equation (1.3) satisfies

max
V

|u(x)| ≤ C.

Remark 2.2. From [13] (see also Section 1), if h �≡ 0, then the conditions 1) −3) mentioned 
in Theorem 2.1 are necessary conditions to solve the Kazdan-Warner equation (1.3). If 
h ≡ 0, then the solutions of (1.3) are not uniformly bounded since any constant function 
solves it.

Assume that h, f ∈ V R satisfy:

1)’ if 
∫
V
fdμ > 0, then maxV h > 0;

2)’ if 
∫
V
fdμ = 0, then 

∫
V
heφdμ < 0 < maxV h;

3)’ if 
∫
V
fdμ < 0, then minV h < 0,

where φ is the unique solution to

−Δφ =
∫
V
fdμ∫

V
1dμ

− f, min
V

φ = 0.

Consider a map

Fh,f : L∞ (V ) −→ L∞ (V ) , u �→ Fh,f (u) := −Δu + f − heu.

We denote by BR the ball with center at the origin and radius R in L∞ (V ). Notice that 
if u solves (2.4) then

−Δ (u− φ) = heφeu−φ −
∫
V
fdμ∫

V
1dμ

.

Applying Theorem 2.1 we conclude that there is no solution on the boundary ∂BR for 
R large. Hence, the Brouwer degree

deg (Fh,f , BR, 0)

is well defined for R large. According to the homotopic invariance, deg (Fh,f , BR, 0) is 
independent of R. Let

dh,f := lim
R→+∞

deg (Fh,f , BR, 0) .

If Jh,f is a Morse function, i.e., every critical point of Jh,f is nondegenerate, then
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deg (Fh,f , BR, 0) =
∑

u∈BR,Fh,f (u)=0

det (DFh,f (u))

whenever ∂BR ∩ F−1
h,f ({0}) = ∅. For more details about the Brouwer degree and its 

various properties we refer the reader to Chang [4, Chapter 3].
The second main theorem is the following

Theorem 2.3. Let G = (V, E) be a connected finite graph and h, c as in Theorem 2.1. 
Then

dh,c =

⎧⎪⎪⎨
⎪⎪⎩
−1, c ≥ 0;
1, c < 0 and maxV h ≤ 0;
0, c < 0 and maxV h > 0.

The Kronecker existence implies that there exists at least one solution if the Brouwer 
degree is nonzero. As applications, we obtain several existence results mentioned in the 
introduction.

Corollary 2.4 (cf. [11,13]). Let G = (V, E) be a connected finite graph and h �≡ 0.

(1) If c > 0, then (1.3) is solvable if and only if maxV h > 0.
(2) If c = 0, then (1.3) is solvable if and only if h changes sign and 

∫
V
hdμ < 0.

(3) If c < 0 and h ≤ 0, then (1.3) has a unique (strict global minimum) solution.
(4) If c < 0 and 

∫
V
hdμ < 0 < maxV h, then there exists a constant ch ∈ (−∞, 0) such 

that (1.3) has at least two distinct solutions for ch < c < 0, at least a (stable) solution 
for c = ch, and no solution for c < ch.

Remark 2.5. Checking the proof of [11, Theorem 1.1], one concludes that

ch ≥ −C maxV |h|
maxV h

if maxV h > 0. The multiplicity of solutions to the Kazdan-Warner equation in the 
negative case can also be obtained by using the minimax method (cf. [19]).

Corollary 2.6 (cf. [19]). Let G = (V, E) be a connected finite graph. There exists a 
constant λ∗ ∈ (0,−minV K) satisfying:

(1) if λ ≤ 0, then (1.4) has a unique (strict global minimum) solution;
(2) if 0 < λ < λ∗, then (1.4) has at least two distinct solutions;
(3) if λ = λ∗, then (1.4) has at least a stable solution, i.e., (1.4) has a solution u

satisfying
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∫
V

(
|∇ξ|2 −Kλe

uξ2
)

dμ ≥ 0, ∀ξ ∈ V R;

(4) if λ > λ∗, then (1.4) has no solution.

3. Preliminaries

In this section, we provide discrete versions of the strong maximum principle, the 
elliptic estimate, Kato’s inequality and the sub- and super-solutions principle.

We begin with the following strong maximum principle.

Lemma 3.1 (Strong maximum principle). If u is not a constant function, then there exists 
x1 ∈ V such that

u (x1) = max
V

u, Δu (x1) < 0.

Proof. Choose x, y ∈ V such that

u(x) = max
V

u, u(y) = min
V

u.

Since G is connected, there exist xi ∈ V such that x = x1, y = xm and

ωxixi+1 > 0, i = 1, . . . ,m− 1.

Since u is not a constant function, we have

u(x) > u(y).

Thus there exists some 1 ≤ i ≤ m − 1 such that u(x1) = · · · = u(xi) > u(xi+1). Without 
loss of generality, we may assume that u (x1) > u(x2). Then u (x1) = maxV u and

Δu (x1) = 1
μx1

∑
y∈V

ωx1y (u(y) − u (x1))

≤ 1
μx1

ωx1x2 (u(x2) − u (x1))

<0.

We complete the proof. �
Since G is a finite graph, all of the spaces Lp (V ) and W 1,p (V ) with 1 ≤ p ≤ ∞

are exactly V R, a finite dimensional linear space. Note that every two norms on V R are 
equivalent. Denote by ‖·‖ the norm of V R for convenience. Set
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V R
0 =

⎧⎨
⎩u ∈ V R :

∫
V

udμ = 0

⎫⎬
⎭ .

Then all of maxV |Δu| , maxV u −minV u and maxV |∇u| are norms of u on V R
0 . Conse-

quently, we have the following elliptic estimate.

Lemma 3.2 (Elliptic estimate). There is a positive constant C such that for all u ∈ V R,

max
V

u− min
V

u ≤ C max
V

|Δu| .

For any function f ∈ V R, we denote by f+ = max {f, 0} and f− = (−f)+. For any 
set A we define the indicator

χA(t) :=
{

1, t ∈ A,

0, t /∈ A.

The following inequality is useful.

Lemma 3.3 (Kato’s inequality).

Δu+ ≥ χ{u>0}Δu.

Proof. By definition,

Δu+(x) = 1
μx

∑
y∈V

ωxy

(
u+(y) − u+(x)

)
.

If u(x) > 0, then u+(x) = u(x) and

Δu+(x) ≥ 1
μx

∑
y∈V

ωxy (u(y) − u(x)) = Δu(x).

If u(x) ≤ 0, then u+(x) = 0 and

Δu+(x) = 1
μx

∑
y∈V

ωxyu
+(y) ≥ 0.

We obtain the desired inequality. �
Let f : V × R −→ R be a smooth function. We say that φ is a sub-solution (super-

solution) to

−Δu(x) = f (x, u(x)) , ∀x ∈ V, (3.1)
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if Δφ(x) + f (x, φ(x)) ≥ (≤ 0) for all x ∈ V . Denote

J(u) =
∫
V

(
1
2 |∇u|2 − F (·, u(·))

)
dμ,

where ∂F∂u = f . Then we have the following sub- and super-solutions principle.

Lemma 3.4 (sub- and super-solutions principle). Assume φ and ψ are sub-solution 
and super-solution to (3.1) respectively with φ ≤ ψ. Then any minimizer of J in {
u ∈ V R : φ ≤ u ≤ ψ

}
solves (3.1).

Proof. Without loss of generality, assume φ �≡ ψ. Then

−Δ (ψ − φ) (x) ≥ f (x, ψ(x)) − f (x, φ(x)) , x ∈ V.

We claim that ψ > φ. Let u be a minimizer of J in 
{
u ∈ V R : φ ≤ u ≤ ψ

}
. If u (x0) =

φ (x0) for some x0 ∈ V , then u ≡ φ. In fact, since u − φ ≥ 0 and minV (u− φ) = 0, if 
u �≡ φ, applying Lemma 3.1, then there exists some x1 ∈ V such that

u (x1) − φ (x1) = 0, Δ(u− φ) (x1) > 0. (3.2)

On the one hand, since u is a minimizer of J , we have

0 ≤ d
dt J (u + tδx1)|t=0

=
∫
V

(−Δu− f (·, u(·))) δx1dμ

= − Δu (x1) − f (x1, u(x1)) .

(3.3)

Here for the first inequality we used the fact that ψ(x1) > φ(x1), which can be verified 
directly. On the other hand, by (3.2) and (3.3), we have

0 <Δ (u− φ) (x1)

≤− f (x1, u(x1)) + f (x1, φ(x1))

=0,

which is a contradiction. Similarly if u(x) = ψ(x) for some x ∈ V then u ≡ ψ. This 
together with the previous fact proves the claim.

If u ≡ φ, then (3.3) implies that φ is also a super-solution and thus u solves (3.1). 
Similarly, if u ≡ ψ then u is also a solution. If φ(x) < u(x) < ψ(x) for any x ∈ V , then 
for every η ∈ V R, since u is a minimizer,
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0 = d
dt J (u + tη)|t=0 =

∫
V

(−Δu− f (·, u(·))) ηdμ.

Thus u solves (3.1). �
4. Blow-up analysis

First we state the following discrete analog of that of Brezis and Merle’s result [2].

Theorem 4.1. Let G = (V, E) be a connected finite graph. Let un ∈ V R be a sequence of 
solutions to

−Δun(x) = hn(x)eun(x) − cn, x ∈ V

where hn ∈ V R and cn ∈ R satisfy

lim
n→∞

hn(x) = h(x), ∀x ∈ V

and

lim
n→∞

cn = c.

Then after passing to a subsequence, we have the following alternatives:

(1) either un is uniformly bounded, or
(2) un converges uniformly to −∞, or
(3) there exists x0 ∈ V such that un (x0) converges to +∞ and h (x0) = 0. Moreover, 

un is uniformly bounded from below in V and above in {x ∈ V : h(x) > 0}.

Proof. If un is uniformly bounded from above, then Δun is uniformly bounded. Applying 
Lemma 3.2,

max
V

un − min
V

un ≤ C.

If minV un is uniformly bounded from below, then we obtain the first alternative. If 
lim inf
n→∞

minV un = −∞, then we obtain the second alternative.
If lim sup

n→∞
un = +∞, then without loss of generality we may assume for some x0 ∈ V ,

0 < un (x0) = max
V

un → +∞

as n → ∞. According to Lemma 3.3, we get
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−Δu−
n = − Δ (−un)+

≤− χ{−un>0}Δ (−un)

=χ{un<0} (cn − hne
un)

≤c+n + h−
n .

Thus

∥∥Δu−
n

∥∥
L1(V ) =

∫
V

∣∣Δu−
n

∣∣ dμ
=

∫
{
Δu−

n≥0
}

Δu−
n dμ−

∫
{
Δu−

n<0
}

Δu−
n dμ

= − 2
∫

{
Δu−

n <0
}

Δu−
n dμ

≤2
∫

{
Δu−

n <0
}
(
c+n + h−

n

)
dμ

≤C.

Applying Lemma 3.2,

max
V

u−
n = max

V
u−
n − min

V
u−
n ≤ C.

Thus un is uniformly bounded from below.
Since un is uniformly bounded from below, we have for every x1 ∈ V

hn (x1) eun(x1) − cn = − Δun (x1)

= 1
μx1

∑
y∈V

ωx1y (un (x1) − un(y))

≤C (un (x1) + 1) ,

which implies

hn (x1) ≤ C (un (x1) + 1) e−un(x1).

Taking n → ∞, we deduce that

h (x1) ≤ 0
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whenever lim sup
n→∞

un (x1) = +∞. In other words, un is uniformly bounded in {x ∈ V :

h(x) > 0}.
Now we prove that h (x0) = 0. The above argument yields that h (x0) ≤ 0. It suffices 

to prove that h (x0) ≥ 0. Applying the maximum principle, we have

hn (x0) eun(x0) − cn = −Δun (x0) ≥ 0.

Thus

hn (x0) ≥ cne
−un(x0).

Letting n → ∞, we deduce that

h (x0) ≥ 0.

The proof is completed. �
Now we can prove the following compactness result.

Theorem 4.2. Let G = (V, E) be a connected finite graph with weight ω and measure μ. 
Assume that there exists a positive constant A satisfying:

(1) maxV (|h| + |c|) ≤ A;
(2) if h(x) > 0 for some x ∈ V , then h(x) ≥ A−1;
(3) if c > 0, then c ≥ A−1;
(4) if c = 0, then 

∫
V
hdμ ≤ −A−1;

(5) if c < 0, then c ≤ −A−1 and minV h ≤ −A−1.

Then there exists a positive constant C depending only on A, G, ω and μ such that every 
solution to (1.3) satisfies

max
x∈V

|u(x)| ≤ C.

Proof. We prove the theorem by contradiction. Assume there is a sequence un ∈ V R of 
solutions to

−Δun = hne
un − cn

satisfying

lim
n→∞

hn = h, lim
n→∞

cn = c, lim
n→∞

‖un‖ = ∞.

Here hn and cn satisfy the conditions (1) − (5).
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If un converges uniformly to −∞, then

−Δ
(
un − min

V
un

)
= hne

un − cn,

which implies that un − minV un is uniformly bounded due to Lemma 3.2. Thus un −
minV un converges uniformly to a solution w of the equation

−Δw = −c, min
V

w = 0.

But this then implies that c = 0 and w ≡ 0. By assumptions (3) and (5), we may assume 
cn = 0. Then the assumption (4) gives

∫
V

hndμ ≤ −A−1.

Taking n → ∞, we obtain
∫
V

hdμ ≤ −A−1.

However,

0 = e−minV un

∫
V

hne
undμ =

∫
V

hne
un−minV undμ →

∫
V

hdμ ≤ −A−1

as n → ∞, which is a contradiction.
Applying Theorem 4.1, we may assume that maxV un converges to +∞, and un

is uniformly bounded from below in V , and un is uniformly bounded in Ω :=
{x ∈ V : h(x) > 0}, and {x ∈ V : h(x) = 0} �= ∅. For n large, the assumption (2) gives

Ω ⊆ {x ∈ V : hn(x) > 0} ⊆
{
x ∈ V : hn(x) ≥ A−1} ⊆

{
x ∈ V : h(x) ≥ A−1} ⊆ Ω,

and therefore all the set inclusions are in fact set equalities. We have
∫
V

cndμ =
∫
V

hne
undμ

=
∫
Ω

hne
undμ +

∫
V \Ω

hne
undμ

≤C −
∫
V

h−
n e

undμ.
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This implies
∫
V

h−
n e

undμ ≤ C.

Hence

‖Δun‖L1(V ) ≤
∫
V

|hn| eundμ + C ≤ C.

According to Lemma 3.2, we know that

max
V

un ≤ min
V

un + C.

By the assumption that maxV un converges to +∞, we deduce that un must converge 
uniformly to +∞. Consequently, Ω = ∅, i.e., h ≤ 0. By assumption (2), we may assume 
hn ≤ 0. Thus

∫
V

cndμ =
∫
V

hne
undμ ≤ 0,

with the equality if and only if hn ≡ 0. If cn = 0, then hn = 0, contradicting the 
assumption (4). Hence cn < 0. By (5) we know that

min
V

hn ≤ −A−1.

Hence

−CA ≤
∫
V

cndμ =
∫
V

hne
undμ ≤ −CA−1eminV un .

This implies minV un ≤ C, which is a contradiction. �
Example 4.1. For every positive number ε, we have

−Δ ln ε = 0 = ±
(
eln ε − ε

)
.

Thus u = ln ε is a solution to the equation −Δu = heu−c with h = ±1 and c = ±ε. Thus 
the conditions (1), (3) and the first part of condition (5) are necessary since lim

ε→0
ln ε =

−∞ and lim
ε→+∞

ln ε = +∞.
We also have

−Δ (− ln ε) = ±
(
εe− ln ε − 1

)
,
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which implies that the conditions (1), (2) and the second part of condition (5) are nec-
essary.

Assume h changes sign and 
∫
V
hdμ < 0. The following Kazdan-Warner equation is 

solvable (see [13] or Corollary 6.2)

−Δu = heu.

Let u be a solution to the above equation. Then

−Δ (u− ln ε) = εheu−ln ε,

which implies that the conditions (1) and (4) are necessary.

Now we can prove Theorem 2.1.

Proof of Theorem 2.1. For fixed h and c, it is easy to check that the conditions (1) − (5)
in Theorem 4.2 hold under assumptions of Theorem 2.1. Therefore, by Theorem 2.1 we 
know that every solution to (1.3) is uniformly bounded by a positive constant depending 
only on h, c, G, ω and μ. �
5. Brouwer degree

In this section, we prove Theorem 2.3. We divided it into three cases: c > 0, c = 0
and c < 0. These cases correspond to Theorem 5.1, Theorem 5.4 and Theorem 5.5, 
respectively.

Firstly, we compute the Brouwer degree for the positive case: c > 0. In other words, 
we prove the following

Theorem 5.1. For every connected finite graph G = (V, E), function h with maxV h > 0
and c > 0, we have dh,c = −1.

Proof. Let ut ∈ V R satisfy

−Δut =
(
h+ − (1 − t)h−) eut − (1 − t)c− tε, t ∈ [0, 1],

where ε > 0 is small to be determined. According to Theorem 4.2, ut is uniformly 
bounded. By the homotopic invariance of the Brouwer degree, we may assume h− ≡ 0
and c = ε > 0.

To compute the Brouwer degree dh,f , we may assume h vanishes nowhere in V . In 
fact, without loss of generality, we may assume μ ≡ 1 and V = {1, 2, . . . ,m}. In this case 
L := −Δ = (lij) is a symmetric matrix which can be characterized by
m×m



L. Sun, L. Wang / Advances in Mathematics 404 (2022) 108422 17
{
lij ≤ 0, ∀i �= j,∑

j lij = 0, ∀i,

and dim kerL = 1 (see Remark 5.2). Since L is a symmetric diagonally dominant real 
matrix with nonnegative diagonal entries, we know that L is positive semi-definite. This 
can also be seen from Green’s formula (2.2).

Now the Kazdan-Warner equation (2.4) is equivalent to

L

⎛
⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

h1e
x1 − f1

h2e
x2 − f2
...

hmexm − fm

⎞
⎟⎟⎠ ,

where xi = u(i), hi = h(i), fi = f(i). We also assume h1 �= 0, . . . , hr �= 0, hr+1 = · · · =
hm = 0 and 1 ≤ r ≤ m. Write

L =
(
P QT

Q R

)
,

where P is a r × r matrix. If r < m, then R is positive definite (see Remark 5.3 for 
details). Now (2.4) is equivalent to

(
P −QTR−1Q

)
⎛
⎜⎜⎝
x1
x2
...
xr

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝
h1e

x1 − f̃1
h2e

x2 − f̃2
...

hre
xr − f̃r

⎞
⎟⎟⎟⎠ ,

where
⎛
⎜⎜⎜⎝
f̃1
f̃2
...
f̃r

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝
f1
f2
...
fr

⎞
⎟⎟⎠−QTR−1

⎛
⎜⎜⎝
fr+1
fr+2

...
fm

⎞
⎟⎟⎠ .

One can check that R−1 =
(
rij
)

satisfies rij ≥ 0 (see [1, p. 137]) and L̃ := P−QTR−1Q =(
l̃ij
)

satisfies

{
l̃ji = l̃ij ≤ 0, ∀i �= j,∑

j l̃ij = 0, ∀i,

and dim ker L̃ = 1. Thus, we can construct a connected finite graph G̃ = (Ṽ , Ẽ) with 
vertex Ṽ = {1, 2, . . . , r}, weight ω̃ij = −l̃ij , measure μ̃ ≡ 1 and L̃ = −Δ̃. Moreover,
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r∑
i=1

f̃i =
m∑
i=1

fi,

and

det (L− diag (h1e
x1 , . . . , hmexm)) = detR · det

(
L̃− diag (h1e

x1 , . . . , hre
xr)
)
.

We conclude that

dh,f = dh|Ṽ ,f̃ .

Applying Theorem 4.2 again, by the homotopic invariance of the Brouwer degree, we 
may assume h ≡ 1 and μ ≡ 1.

We consider

−Δu(x) = eu(x) − ε, x ∈ V. (5.1)

Notice that ∫
V

eudμ = ε

∫
V

1dμ.

We obtain

emaxV u ≤ Cε.

If w solves

−Δw = ew − ε,

then

−Δ(u− w) = eu − ew,

which implies

|Δ(u− w)| ≤ max {eu, ew} |u− w| ≤ Cε |u− w| .

Applying Lemma 3.2, we have

max
V

(u− w) − min
V

(u− w) ≤ Cεmax
V

|u− w|

≤ Cε
(
max
V

(u− w) − min
V

(u− w) +
∣∣∣min

V
(u− w)

∣∣∣) .
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Thus for small ε > 0, we have

max
V

(u− w) ≤ min
V

(u− w) + 1
2

∣∣∣min
V

(u− w)
∣∣∣ .

If u �≡ w, then eu − ew �≡ 0. Since
∫
V

(eu − ew) dμ = 0,

we must have

min
V

(u− w) < 0 < max
V

(u− w) .

Hence

0 < max
V

(u− w) ≤ min
V

(u− w) − 1
2 min

V
(u− w) = 1

2 min
V

(u− w) < 0,

which is a contradiction. Therefore, the Kazdan-Warner equation (5.1) has a unique 
solution u = ln ε if ε > 0 is small.

Note that −Δ is a nonnegative matrix and 0 is an eigenvalue of −Δ with multiplicity 
one. We have for small ε > 0,

det (DF1,ε (ln ε)) = det (−Δ − εId) < 0.

Consequently, by the homotopy invariance of the Brouwer degree,

dh,c = lim
ε↘0

d1,ε = sgn det (DF1,ε (ln ε)) = −1

and the proof is finished. �
Remark 5.2. The condition dim kerL = 1 is equivalent to that the graph G = (V, E) is 
connected, i.e., has only one connected component. This further guarantees that no rows 
of L can be zero and therefore lii > 0 for each i.

Remark 5.3. Here we give details explaining why R is positive definite. First, since L is 
positive semi-definite, we know that R is also positive semi-definite. Therefore, all the 
eigenvalues of R are nonnegative. If R is not positive, then it has an eigenvalue 0. Let Y

be an eigenvector for the eigenvalue 0. For any column vector X ∈ Rm−r, let Z =
(
X
Y

)
. 

We have

ZTLZ = (XT, Y T)
(
P QT

Q R

)(
X
Y

)
= XTPX + 2XTQTY.
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Since L is positive semi-definite, we have XTPX + 2XTQTY ≥ 0 for any X ∈ Rm−r. 
Therefore, we must have QTY = 0. Note that

LZ =
(
PX
QX

)
.

It turns out that when Y �= 0, 
(
0, Y T)T is an eigenvector of L of the eigenvalue 0. 

However, by the definition of L, we know that (1, 1, · · · , 1)T is an eigenvector of L
corresponding to the eigenvalue 0. Since we have assumed that dimkerL = 1, we have

kerL = span(1, 1, · · · , 1)T.

This implies that Y = 0, which contradicts the assumption that Y is an eigenvector of 
R.

Secondly, we compute the Brouwer degree for the flat case: c = 0. We prove the 
following

Theorem 5.4. For every connected finite graph G = (V, E) and sign changed function 
h ∈ V R with 

∫
V
hdμ < 0, we have

dh,0 = −1.

Proof. Let ut ∈ V R be a solution to

−Δut = heut − t, t ∈ [0, 1].

We claim that there exists a positive constant C such that

max
V

|ut| ≤ C, ∀t ∈ [0, 1]. (5.2)

It suffices to prove

lim sup
t↘0

max
V

|ut| ≤ C. (5.3)

We prove it by contradiction. Suppose (5.3) is not true. According to Theorem 4.1, after 
passing to a subsequence, there are two cases:

(1) ut converges uniformly to −∞, or
(2) ut is uniformly bounded from below in V and uniformly bounded in {x ∈ V : h(x) >

0} �= ∅.
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For the first case, arguing similarly as in the beginning of the proof of Theorem 4.2, 
we know that ut − minV ut converges uniformly to 0. We conclude that

0 >

∫
V

hdμ = lim
t↘0

∫
V

heut−minV utdμ = lim
t↘0

∫
V

te−minV utdμ ≥ 0,

which is a contradiction.
For the second case, we have

∫
V

|h| eutdμ =
∫

{x∈V :h(x)>0}

heutdμ−
∫

{x∈V :h(x)<0}

heutdμ

=2
∫

{x∈V :h(x)>0}

heutdμ−
∫
V

heutdμ

=2
∫

{x∈V :h(x)>0}

heutdμ−
∫
V

tdμ

≤C.

This implies

min
V

ut ≤ C.

Moreover, it also implies

max
V

|Δut| ≤ max
V

|h|eut + 1 ≤ C.

Applying Lemma 3.2, we have

max
V

ut ≤ min
V

ut + C max
V

|Δu| ≤ min
V

ut + C ≤ C,

which is a contradiction.
The a priori estimate (5.2) implies

dh,0 = lim
t↘0

dh,t = −1.

Here we used the homotopic invariance of the Brouwer degree and Theorem 5.1. �
Finally, we compute the Brouwer degree for the negative case: c < 0. We prove the 

following
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Theorem 5.5. For every connected finite graph G = (V, E), function h with minV h < 0
and c < 0, we have

dh,c =
{

1, maxV h ≤ 0,
0, maxV h > 0.

Proof. Since c < 0, a necessary condition for the existence to the Kazdan-Warner equa-
tion (1.3) is

∫
V

hdμ < 0.

This was proved by Grigor’yan, Lin and Yang [13, Theorem 3]. For the sake of complete-
ness, we reproduce its proof here. In fact, if u solves (1.3), then

∫
V

hdμ =
∫
V

ce−udμ−
∫
V

e−uΔudμ

<−
∫
V

e−uΔudμ (since c < 0)

=1
2
∑

x,y∈V

ωx,y (u(x) − u(y))
(
e−u(x) − e−u(y)

)
(by (2.2))

≤0.

(5.4)

First we assume maxV h ≤ 0. Let ut ∈ V R satisfy

−Δut = (−t + (1 − t)h) eut − c, t ∈ [0, 1].

According to Theorem 4.1, ut is uniformly bounded. By the homotopy invariance of the 
Brouwer degree, we may assume h ≡ −1 and μ ≡ 1. We claim that u ≡ ln(−c) is the 
unique solution to

−Δu = −eu − c.

It suffices to prove that u is a constant function. For otherwise, applying Lemma 3.1, we 
have

−emaxV u − c > 0, −eminV u − c < 0

which is a contradiction. Thus

dh,c = d−1,c = sgn det (DF−1,c (ln(−c))) = sgn det (−Δ − cId) = 1.
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Second, we assume maxV h > 0. Let vt ∈ V R satisfy

−Δvt = (thΛ + (1 − t)h) evt − c, t ∈ [0, 1],

where

hΛ(x) =
{

Λ, h(x) > 0,
−1, h(x) ≤ 0,

and Λ > 0 is large to be determined. According to Theorem 4.1, vt is uniformly bounded. 
By the homotopy invariance of the Brouwer degree, without loss of generality, assume 
h ≡ hΛ. Choose Λ large such that

∫
V

hΛdμ = Λ
∫

{x∈V :h(x)>0}

1dμ−
∫

{x∈V :h(x)≤0}

1dμ > 0.

Consequently, there is no solution if Λ is large. Thus, according to Theorem 4.1, by the 
homotopy invariance and Kronecker existence of the Brouwer degree,

dh,c = lim
Λ→+∞

dhΛ,c = 0.

We finish the proof. �
6. Existence results

As consequences of the degree theory, we state and prove several existence results in 
the literature. Specifically speaking, we give proofs of Corollary 2.4 and Corollary 2.6. 
While some proofs and techniques are borrowed from the literature, the main new in-
gredient in our proofs is that we apply the degree theory to analyze the existence of 
solutions.

Corollary 6.1 (Solvability for positive case). If c > 0, then (1.3) is solvable if and only if 
maxV h > 0.

Proof. If there is a solution u, since 
∫
V
heudμ =

∫
V
cdμ > 0, we must have maxV h > 0. 

Under the assumption maxV h > 0, by Theorem 2.3 we have dh,c = −1. In particular, 
(1.3) has at least one solution. �
Corollary 6.2 (Solvability for flat case). If c = 0 and h �≡ 0, then (1.3) is solvable if and 
only if h changes sign and 

∫
V
hdμ < 0.

Proof. If (1.3) has a solution u, then since 
∫
V
heudμ = 0, we know that h must change 

sign. Moreover, similar to (5.4), we have
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∫
V

hdμ = 1
2
∑

x,y∈V

ωx,y(u(x) − u(y))
(
e−u(x) − e−u(y)

)
≤ 0, (6.1)

and the equality holds if and only if u(x) = u(y) whenever ωx,y > 0. Since V is connected, 
this can happen only when u is a constant. But then h ≡ 0, contradicting the assumption. 
Hence we have 

∫
V
hdμ < 0. We remark that the proof here follows the lines of [13, p. 

92].
Conversely, under the assumption that 

∫
V
hdμ < 0 and h changes sign, by 

Theorem 2.3 we have dh,0 = −1. As a consequence, (1.3) has at least one solution. �
In the rest of this section, we consider the negative case. First, we have the following

Lemma 6.3. If c < 0, then (1.3) has a solution if and only if there is a super-solution to 
(1.3).

Proof. When A is large enough, the constant function −A satisfies

−Δ (−A) + c− he−A = c− he−A < 0.

Thus −A is a sub-solution to (1.3) since c < 0. Applying the sub- and super-solutions 
method (Lemma 3.4), we complete the proof. �
Corollary 6.4. Assume c < 0 and 

∫
V
hdμ < 0.

(1) If h ≤ 0, then (1.3) has a unique (strict global minimum) solution.
(2) If maxV h > 0, then there exists a constant ch ∈ (−∞, 0) such that (1.3) has at least 

two distinct solutions for ch < c < 0, at least a (stable) solution for c = ch and no 
solution for c < ch.

Proof. If h ≤ 0, we have dh,c = 1 for every c < 0. Consequently, the Kazdan-Warner 
equation (1.3) is solvable. Since h ≤ 0, every solution to (1.3) is stable. Applying the 
strong maximum principle, one concludes that the solution to (1.3) is unique. The fact 
dh,c = 1 then implies that the unique solution to (1.3) is the strict global minimum of 
Jh,c.

From now on, we assume maxV h > 0.
Applying the sub- and super-solution method, Grigor’yan, Lin and Yang [13] proved 

that (1.3) is solvable for every c ∈ [c0, 0) where −c0 > 0 is small. In fact, arguing in a 
way similar to that of Grigor’yan, Lin and Yang [13, p. 10], solve

−Δv = h−
∫
V
hdμ∫

V
1dμ

,

∫
V

vdμ = 0.

For constants a > 0, b = ln a, we compute
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−Δ (av + b) =a

(
h−

∫
V
hdμ∫

V
1dμ

)

=heav+b − ah (eav − 1) − a

∫
V
hdμ∫

V
1dμ

≥heav+b − a

(
|h| |eav − 1| +

∫
V
hdμ∫

V
1dμ

)
.

Choose a and −c small to obtain a super-solution ū = av + b. Thus there exists some 
c1 < 0 such that (1.3) has a solution uc1 for c = c1. For any c ∈ [c1, 0), it is easy to see 
that

Δuc1 + heuc1 − c = c1 − c ≤ 0.

This means that uc1 is a super solution for (1.3), and hence (1.3) has a solution by 
Lemma 6.3. Let

ch = inf {c ∈ R : (1.3) has a solution} .

Then ch ∈ [−∞, 0) and (1.3) has a solution if c ∈ (ch, 0) and no solution if c < ch.
Moreover, (1.3) has a strict local minimum solution for c ∈ (ch, 0). In fact, following 

the idea of Liu and Yang [19], let u0 ∈ V R satisfy

−Δu0 = heu0 − c0 > heu0 − c,

where c0 ∈ (ch, 0). Choose A > 0 large such that u0 > −A and

−Δ (−A) < he−A − c.

Choose u ∈ V R such that −A ≤ u ≤ u0 and

Jh,c(u) = min
−A≤v≤u0

Jh,c(v).

Applying Lemma 3.1, one can prove that −A < u < u0 and conclude that u is a local 
minimum of Jh,c (cf. [11]). Moreover, u is a strict local minimum. In fact, following the 
lines of [19, p. 10-11], if there exists 0 �≡ ξ ∈ V R such that d2

dt2 Jh,c (u + tξ)|t=0 = 0, then

−Δξ = heuξ.

This implies that ξ is not a constant function since h �≡ 0. Since u is a local minimum of 
Jh,c, analyzing the Taylor expansion of Jh,c(u + tξ) at the point t = 0, we deduce that

d3

dt3 Jh,c (u + tξ)|t=0 = 0, d4

dt4 Jh,c (u + tξ)|t=0 ≥ 0.
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However,

d4

dt4 Jh,c (u + tξ)|t=0 = −
∫
V

heuξ4dμ

=
∫
V

ξ3Δξdμ

= − 1
2
∑
x,y

ωxy (ξ(x) − ξ(y))
(
ξ3(x) − ξ3(y)

)

<0

which is a contradiction. In other words, u is strictly stable which implies that u is a 
strict local minimum.

If h ≤ 0 and minV h < 0, then we conclude that ch = −∞ since (1.3) is solvable for 
every c < 0. If ch = −∞, then Ge [11] proved that h ≤ 0. In fact, if maxV h > 0, then

ch ≥ − C ‖Δh‖
maxV h+ . (6.2)

Following the lines of Ge [11], assume uc, ξc satisfies

−Δuc = heuc − c, (Δ + c) ξc = h.

Notice that for every x ∈ V ,

−e−uc(x)Δuc(x) = 1
μx

∑
y∈V

ωxy (uc(x) − uc(y)) e−uc(x)

≤ 1
μx

∑
y∈V

ωxy

(
e−uc(y) − e−uc(x)

)

=Δe−uc(x).

(6.3)

Here we used the inequality et − 1 ≥ t (∀t ∈ R) wherein the equality holds if and only if 
t = 0. We have

(Δ + c) e−uc ≥ −e−ucΔuc + ce−uc = h = (Δ + c) ξc,

and the strict inequality holds at some point since the inequality in (6.3) cannot always 
be equality as uc is not a constant function. Let g = e−uc − ξc. Then

Δg ≥ −cg. (6.4)
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If g is a constant, then we immediately deduce that g < 0. If g is not a constant, by 
Lemma 3.1 we may choose some x1 ∈ V such that

g(x1) = max
V

g, Δg(x1) < 0.

These together with (6.4) imply g < 0. In other words, we have proved that

ξc > e−uc .

Hence when −c is large enough,

0 > cξc =
(
1 + c−1Δ

)−1
h = h− c−1Δh + O

(
c−2 ‖Δh‖

)
.

We obtain the desired estimate (6.2). As a consequence, if ch = −∞, then maxV h ≤ 0.
If ch > −∞, then maxV h > 0 and dh,c = 0. We have already proved that there exists 

a strict local minimum solution for every ch < c < 0. Hence, there must be another 
solution for ch < c < 0.

If ch > −∞, then we want to prove that there exists a stable solution for c = ch. Let 
uc be a strict local minimum solution for each ch < c < 0. According to Theorem 4.1, we 
know that uc is uniformly bounded. Thus, letting c ↘ ch, after passing to a subsequence, 
we obtain a solution to (1.3) for c = ch. Since uc is stable, we conclude that the limit is 
also stable.

Up to now, we obtain a stable solution for each c ∈ [ch, 0). Moreover, (1.3) has a strict 
local minimum solution for every c ∈ (ch, 0). Since the Brouwer degree dh,c = 0 under 
the assumption maxV h > 0, we conclude that (1.3) has at least two distinct solutions 
for every c ∈ (ch, 0). �

Combining Corollaries 6.1, 6.2 and 6.4, we complete the proof of Corollary 2.4.
Finally, we provide a new proof of Corollary 2.6 different from that in [19].

Proof of Corollary 2.6. Without loss of generality, assume κ ≡ −1. Recall the condition 
minV K < maxV K = 0 for (1.4). Since Kλ ≤ 0 for λ ≤ 0, according to Corollary 2.4, 
we conclude that (1.4) has only one (strict global minimum) solution when λ ≤ 0. In 
particular, when λ = 0, there is a strict global minimum of JK,κ.

Let ψ be the unique solution to

−Δψ = Keψ − κ + 1.

Then

−Δψ + κ−Kλe
ψ = 1 − λeψ.

Thus for small λ, we obtain a super-solution ψ to (1.4). Applying the sub- and super-
solutions method, we conclude that (1.4) is solvable for small λ. Define
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λ∗ = sup {λ ∈ R : (1.4) has a solution} .

If (1.4) has a solution, then

∫
V

Kλe
udμ =

∫
V

κdμ < 0.

This implies minV Kλ = minV K + λ < 0, i.e., λ < − minV K. Hence we have λ∗ ≤
− minV K.

Applying the sub- and super-solutions principle, if (1.4) has a solution when λ = λ0, 
then (1.4) has a solution for every λ < λ0. One can check that there exists a strict local 
minimum uλ of JKλ,κ for λ < λ∗. Since the Brouwer degree dKλ,κ = 0 for 0 < λ < λ∗, we 
conclude that there exists another solution to (1.4). By definition, (1.4) has no solution 
for any λ > λ∗.

Consider the sequence {uλ}0<λ<λ∗ . We prove that uλ is uniformly bounded to com-
plete the proof. For otherwise, according to Theorem 4.1, since 

∫
V
κdμ < 0, we may 

assume maxV uλ converges to +∞, and uλ is uniformly bounded from below in V , and 
uλ is uniformly bounded in {x ∈ V : Kλ∗(x) > 0} �= ∅. By definition Kλ = K +λ. Thus, 
for λ∗ − λ small, we conclude that uλ is uniformly bounded in {x ∈ V : Kλ(x) > 0}. 
Therefore,

∫
V

κdμ =
∫
V

Kλe
uλdμ

=
∫

{x∈V :Kλ(x)>0}

Kλe
uλdμ +

∫
{x∈V :Kλ(x)≤0}

Kλe
uλdμ

=
∫

{x∈V :Kλ∗ (x)>0}

Kλe
uλdμ +

∫
{x∈V :Kλ(x)≤0}

Kλe
uλdμ

≤C −
∫
V

K−
λ euλdμ.

This implies 
∫
V
K−

λ euλdμ ≤ C. The second line of the above equation also implies

∫
V

K+
λ euλdμ =

∫
V

κdμ +
∫
V

K−
λ dμ.

Hence ∫
V

K+
λ euλdμ <

∫
V

K−
λ euλdμ ≤ C.



L. Sun, L. Wang / Advances in Mathematics 404 (2022) 108422 29
Thus

‖Δuλ‖L1(V ) ≤ C.

We obtain

max
V

uλ ≤ min
V

uλ + C ≤ C

which is a contradiction. �
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