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ds2 =
m∑
i=1

(dxi)2 −
m+n∑

α=m+1
(dxα)2.

For a = (a1, . . . , am+n) ∈ Rm+n
n and b = (b1, . . . , bm+n) ∈ Rm+n

n , introduce

〈a, b〉 :=
m∑
i=1

aibi −
m+n∑

α=m+1
aαbα, |a|2 := 〈a, a〉 , ‖a‖ :=

√
| 〈a, a〉 |.

An m-dimensional submanifold Mm in Rm+n
n is called spacelike if the induced metric on 

Mm is a Riemannian metric. The mean curvature flow (MCF) in the pseudo-Euclidean 
space is a one-parameter family of immersions Xt = X(·, t) : Mm → Rm+n

n with the 
corresponding image Mt = Xt(Mm) such that⎧⎨⎩

∂

∂t
X(x, t) = H(x, t), (x, t) ∈ Mm × [0, T );

X(x, 0) = X(x), x ∈ Mm,
(1.1)

is satisfied, here H(x, t) is the mean curvature vector of Mt at X(x, t) in Rm+n
n . There 

are many interesting and essential results on the mean curvature flow of spacelike sub-
manifolds in certain Lorentzian manifolds (see e.g. [17–19,22,23,34]).

Let us firstly recall some facts in Euclidean spaces, Chern [12] showed that entire 
graphs of constant mean curvature (CMC) in Rm+1 are minimal. It is well known that 
these graphs must be hyperplanes for m ≤ 7 (see Bernstein [5] for m = 2, De Giorgi 
[14] for m = 3, Almgren [3] for m = 4 and Simons [31] for m ≤ 7) and there are 
counterexamples for m > 7 (see Bombieri-De Giorgi-Giusti [6]).

In Minkowski space Rm+1
1 , Calabi [7] proposed the Bernstein problem for spacelike 

maximal hypersurfaces and proved that such hypersurfaces have to be hyperplanes when 
m ≤ 4. Cheng-Yau [11] solved the problem for all m, in sharp contrast to the situation 
of the Euclidean space. Later, Ishihara [26] and Jost-Xin [27] generalized the results to 
higher codimension. The rigidity problem for spacelike submanifolds with parallel mean 
curvature was studied in [27,33,35].

On the other hand, by the work of Colding-Minicozzi [13] (see also [4]), we know that, 
in the Euclidean space, minimal submanifolds and self-shrinkers share many geometric 
properties. Recall that Mm is said to be a self-shrinker in Rm+n

n if

H = −1
2X

N , (1.2)

which is an important class of solutions to (1.1), where XN is the normal part of X. So 
it is natural to consider the rigidity of spacelike self-shrinkers in the pseudo-Euclidean 
space. Under the global conditions of Lagrangian entire graph or complete with the 
induced metric, there are plenty of related works, see e.g. [1,8,9,16,25,28]. It should 
mention that Chen-Qiu [10] proved that only the affine planes are the complete m-
dimensional spacelike self-shrinkers in the pseudo-Euclidean space Rm+n

n .
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In this paper, we further study the geometry of the m-dimensional spacelike entire 
self-shrinking graphs in Rm+n

n . By establishing a new volume growth estimate (see The-
orem 3.1) for the spacelike entire graphs and the Co-Area formula (see Federer [20] for 
Lipschitz functions or Fleming-Rishel [21] for BV functions), we give various growth 
estimates on the mean curvature and the w-function when the spacelike self-shrinking 
graph is not a linear subspace, these lead to rigidity results if the growth conditions are 
not satisfied.

Theorem 1.1. Let X : Mm → Rm+n
n be a spacelike entire self-shrinking graph. Assume 

that the origin o ∈ Mm and Mm is not a linear subspace. Then the mean curvature 
satisfies

lim sup
R→∞

R2

log
(∫

DR
‖H‖4e−

z
4

) ≤ 4
√
m, (1.3)

where DR := Mm ∩ {p ∈ Rm+n
n : z(p) ≤ R2} and z = |X|2 is the pseudo-distance.

In Theorem 1.1, we denote ‖H‖2 := −〈H, H〉, which is nonnegative. We use the same 
notation for other timelike quantities.

Remark 1.2. Clearly, Theorem 1.1 implies a rigidity result for the spacelike entire self-
shrinking graph if

lim sup
R→∞

R2

log
(∫

DR
‖H‖4e−

z
4

) > 4
√
m.

In particular, by the above Theorem 1.1 and Theorem 3.1 which is stated in section 3, if 
‖H‖2 ≤ Ceαz for some constant C > 0 and α < 1

8 , then the spacelike entire self-shrinking 
graph has to be a linear subspace (see also Theorem 1.1 in [28] or Theorem 2.1 in [29]). 
Moreover, the growth condition can be weakened as ‖H‖2 ≤ Ceαz for α < 1

6 + 1
6
√
m

, see 
Corollary 5.2 in section 5.

Theorem 1.3. Let X : Mm → Rm+n
n be a spacelike entire self-shrinking graph. Assume 

that the origin o ∈ Mm and Mm is not a linear subspace. Then the w-function satisfies

lim sup
R→∞

(logR)2∫
DR

w2(logw)2e− z
4
< ∞. (1.4)

Here the definition of w-function is given in Section 2.

Remark 1.4. Ding-Wang [15] showed that the spacelike entire self-shrinking graph sat-
isfying lim log det(gij(x))

|x| = 0 is a linear subspace (see Theorem 3 in [15]). By using 

|x|→∞
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the above Theorem 1.3, we can improve their result, see the details in Remark 5.5 in 
section 5.

The article will be organized as follows. In the next section, we shall give some pre-
liminaries. In Section 3, we establish a new volume growth estimate for spacelike entire 
self-shrinking graphs. Subsequently, in Section 4, we give the proof of Theorem 1.1
and Theorem 1.3. Finally, as applications, various rigidity results for the spacelike self-
shrinkers are presented in Section 5.

2. Preliminaries

Let Mm be an m-dimensional spacelike submanifold in Rm+n
n . Let ∇ be the ambient 

connection on Rm+n
n , and ∇ the induced connection on M . If there is no confusion, we 

also denote the normal connection on the normal bundle NM of M in Rm+n
n by ∇. The 

second fundamental form B of Mm in Rm+n
n is defined by

BUW :=
(
∇UW

)N
for U, W ∈ Γ(TMm). We use the notation (·)T and (·)N for the orthogonal projections 
into the tangent bundle TMm and the normal bundle NMm, respectively. For ν ∈
Γ(NMm) we define the shape operator Aν : TMm → TMm by

Aν(U) := −
(
∇Uν

)T
.

We have the following

〈Aν(U),W 〉 = 〈Aν(W ), U〉 = 〈BUW , ν〉 .

Taking the trace of B gives the mean curvature vector H of Mm in Rm+n
n and

H := trace(B) =
m∑
i=1

Beiei ,

where {ei} is a local orthonormal frame field of TMm. The Gauss equation, Codazzi 
equation and Ricci equation are (cf. [32])

Rijkl =
〈
Beiek , Bejel

〉
−
〈
Beiel , Bejek

〉
,

(∇eiB)ejek =
(
∇ejB

)
eiek

,

R (ei, ej , ν, μ) = 〈Aν (ei) , Aμ (ej)〉 − 〈Aν (ej) , Aμ (ei)〉 .

All spacelike m-planes (oriented m-subspaces) in Rm+n
n form the pseudo-Grassmannian 

manifold Gn
m,n. It is a specific Cartan-Hadamard manifold which is the noncompact dual 

space of the Grassmannian manifold Gm,n.
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Let P1, P2 ∈ Gn
m,n be two spacelike m-planes in Rm+n

n . The angles between P1 and 
P2 are defined by the critical values of angle θ between a nonzero vector x in P1 and its 
orthogonal projection x∗ in P2 as x runs through P1.

Assume that e1, ..., em are oriented orthonormal vectors which span P1 and a1, ..., am
for P2. For a nonzero vector in P1,

x =
∑
i

xiei,

its orthonormal projection in P2 is

x∗ =
∑
i

x∗
i ai.

Hence for any y ∈ P2, we obtain

〈x− x∗, y〉 = 0.

Let Wij := 〈ei, aj〉 and W := (Wij). Then we get

x∗
j =

∑
i

Wijxi.

A direct computation yields

〈x, x∗〉 = |x∗|2 =
∑
i,j,k

xiWijWkjxk.

Since WWT is symmetric, so we can choose appropriate orthonormal vectors {e1, ..., em}, 
such that WWT = diag{μ2

1, ..., μ
2
m} with μi = cosh θi ≥ 1. Hence

〈x, x∗〉 ≥ |x||x∗|.

The angle θ between x and x∗ is defined by

cosh θ = 〈x, x∗〉
|x||x∗| .

Fix P2 ∈ Gn
m,n, which is spanned by a unit m-vector a1∧ · · ·∧am. For any P ∈ Gn

m,n, 
spanned by an m-vector e1 ∧ · · · ∧ em, define the w-function on Gn

m,n as follows

w := 〈P, P2〉 = 〈e1 ∧ · · · ∧ em, a1 ∧ · · · ∧ am〉 = detW.

Then, up to multiplying by -1, the w-function given by the spacelike m-plane P satisfies 
w ≥ 1 when restricted on Mm. Now we have
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w =
∏
i

cosh θi =
∏
i

1√
1 − λ2

i

, λi = tanh θi.

Choose timelike vectors am+α such that {ai, am+α|i = 1, ..., m; α = 1, ..., n} is an oriented 
orthonormal Lorentzian basis of Rm+n

n . Then

{ei = cosh θiai + sinh θiam+i|i = 1, . . . ,m}

is an oriented tangent orthonormal basis of Mm, here θi = 0 for i > min{m, n}.

3. Volume growth estimate

We derive the following volume growth estimate for the spacelike entire graphs in 
pseudo-Euclidean space Rm+n

n .

Theorem 3.1. Let X : Mm −→ Rm+n
n be an m-dimensional spacelike entire graph. Let 

z = 〈X, X〉. Assume that the origin o ∈ Mm, then

lim sup
R→∞

R−2m
∫

{z≤R2}∩Mm

w < ∞. (3.1)

Consequently, for any α > 0, ∫
Mm

we−αz < ∞.

Proof. Since Mm is an entire graph, Mm can be written as {X = (x, u(x))|x ∈ Rm, u =
(u1, u2, ..., un)}. By using the singular value decomposition (see [30]), by an action of 
SO(m) ×SO(n) we can choose a new Lorentzian coordinates {x1, . . . , xm, xm+1, . . . , xm+n}
on Rm+n

n such that at a considered point to be calculated,

du

(
∂

∂xi

)
= λi

∂

∂xm+i
.

Here λi = 0 for i > min{m, n}. For simplicity, we denote Ei = ∂
∂xi

, Em+α = ∂
∂xm+α

, 
(i = 1, ..., m, and α = 1, ..., n). Since Mm is spacelike, we have |λi| < 1. Let

ei := 1√
1 − λ2

i

(Ei + λiEm+i).

Define the w-function as

w = 〈e1 ∧ ... ∧ em, E1 ∧ ... ∧ Em〉.
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Then we derive

w =
∏
i

1√
1 − λ2

i

= 1√
det(gij)

, (3.2)

where gij = δij−
∑

α uα
i u

α
j is the induced metric on Mm. Moreover, z = |x|2Rm−|u(x)|2Rn . 

Since M is spacelike and u(0) = 0 we have |u(x)| < |x| (for |x| �= 0), thus for given ε > 0, 
there exists a constant δ > 0, such that for each point (x, u(x)) ∈ M with |x| = ε, we get 
|u(x)| ≤ δ < ε. Without loss of generality, assume x �= 0, let x̄ = ε

|x|x and (x̄, u(x̄)) ∈ M , 
then |x̄| = ε and |u(x̄)| ≤ δ. Again since M is spacelike, we obtain

|u(x) − u(x̄)| ≤ |x− x̄|.

It follows that

|u(x)|2 ≤|x|2 + |x̄|2 − |u(x̄)|2 + 2〈u(x), u(x̄)〉 − 2〈x, x̄〉
≤|x|2 + ε2 − |u(x̄)|2 + 2|u(x)||u(x̄)| − 2ε|x|
≤|x|2 − 2(ε− δ)|x| + ε2.

This implies that

|u(x)| ≤ |x| + ε

and

|x| ≤ z + ε2

2(ε− δ) =: C1(z + 1), (3.3)

where C1 is a positive constant depending only on ε and δ. Direct computation gives us

|XT |2 =
∑
i

〈X, ei〉2 =
∑
i

1
1 − λ2

i

(〈X,Ei〉 + λi〈X,Em+i〉)2

≤
∑
i

2
1 − λ2

i

(
〈X,Ei〉2 + 〈X,Em+i〉2

)
≤2w2(|x|2 + |u(x)|2).

Therefore we obtain

|XT | ≤ C2w(z + 1), (3.4)

where C2 is a positive constant depending only on ε and δ.
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Since M is entire, by (3.3), z is proper. Hence, for every R > 0,∫
{z≤R2}∩Mm

w =
∫

{x∈Rm:|x|2Rm−|u(x)|2Rn≤R2}

w
√

det gdx ≤
∫

{|x|Rm≤C1(R2+1)}

dx

= Cm
1
(
R2 + 1

)m ∫
{|x|Rm≤1}

dx,

which gives the desired estimate (3.1).
Since |∇√

z| = |XT |√
z

≥ 1 whenever X �= o, by the Co-Area formula and integration by 
parts, we obtain

∫
Mm

we−αz =
∞∫
0

⎛⎜⎝ ∫
{√z=R}∩Mm

1
|∇√

z|we
−αz

⎞⎟⎠ dR

=
∞∫
0

e−αR2
d

∫
{√z≤R}∩Mm

w

=2α
∞∫
0

Re−αR2

⎛⎜⎝ ∫
{√z≤R}∩Mm

w

⎞⎟⎠ dR

≤2α
1∫

0

Re−αR2

⎛⎜⎝ ∫
{√z≤R}∩Mm

w

⎞⎟⎠ dR + C

∞∫
1

Re−αR2
R2mdR

<∞. �
4. Proof of Theorem 1.1 and Theorem 1.3

Let V := −1
2X

T and ΔV := Δ + 〈V, ∇·〉 be the drift-Laplacian.

Proof of Theorem 1.1. Let {e1, ..., em} be a local tangent orthonormal frame field on 
Mm such that ∇eiej = 0 at a considered point to be calculated. From the self-shrinker 
equation (1.2), we obtain

∇ejH = −1
2∇ej (X − 〈X, ek〉ek)N = 1

2 〈X, ek〉Bjk (4.1)

and

∇ei∇ejH = 1
Bij − 〈H,Bik〉Bjk + 1 〈X, ek〉∇eiBjk.
2 2
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Then using the Codazzi equation, we derive

ΔV |H|2 =Δ|H|2 +
〈
V,∇|H|2

〉
=2〈∇ei∇eiH,H〉 + 2|∇H|2 +

〈
V,∇|H|2

〉
=|H|2 − 2〈H,Bik〉2 + 1

2∇XT |H|2 + 2|∇H|2 − 1
2
〈
XT ,∇|H|2

〉
=|H|2 − 2|AH |2 + 2|∇H|2.

It follows that

ΔV ‖H‖2 = ‖H‖2 + 2|AH |2 + 2‖∇H‖2 ≥ 2
∣∣AH

∣∣2 , (4.2)

where ‖H‖2 is the absolute value of the square of the mean curvature vector H.
By (4.1), we get

∇XT ‖H‖2 = − 2 〈∇XTH,H〉
= − 2 〈X, ej〉

〈
∇ejH,H

〉
= − 2〈X, ej〉

〈
1
2 〈X, ek〉Bjk, H

〉
= −

〈
B(XT , XT ), H

〉
= −

〈
AH(XT ), XT

〉
.

Note that X = XT + XN , therefore we have

z = 〈X,X〉 =
∣∣XT

∣∣2 +
∣∣XN

∣∣2 =
∣∣XT

∣∣2 − ∥∥XN
∥∥2

,

where 
∥∥XN

∥∥2 is the absolute value of the square of the timelike vector XN . Then by 
the self-shrinker equation (1.2), we obtain∣∣XT

∣∣2 = z + 4‖H‖2.

Denote BR :=
{
p ∈ Rm+n

n : z(p) ≤ R2} and DR := Mm ∩BR. By (3.3), z is proper, this 
implies that DR is compact in Mm. Thus a direct computation yields∫

DR

ΔV ‖H‖2e−
z
4 =

∫
DR

e
z
4 div

(
e−

z
4∇‖H‖2) e− z

4

=
∫
DR

div
(
e−

z
4∇‖H‖2)

=
∫ 〈

e−
z
4∇‖H‖2,

XT

|XT |

〉

∂DR
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=
∫

∂DR

1
|XT |∇XT ‖H‖2e−

z
4

= −
∫

∂DR

〈
AH(XT ), XT

〉
|XT | e−

z
4

≤
∫

∂DR

∣∣AH
∣∣ ∣∣XT

∣∣ e− z
4

≤

⎛⎝R

∫
∂DR

∣∣AH
∣∣2

|XT | e
− z

4

⎞⎠
1
2
⎛⎝R−1

∫
∂DR

(
z + 4‖H‖2)2

|XT | e−
z
4

⎞⎠
1
2

.

Namely

∫
DR

ΔV ‖H‖2e−
z
4 ≤

⎛⎝R

∫
∂DR

∣∣AH
∣∣2

|XT | e
− z

4

⎞⎠
1
2
⎛⎝R−1

∫
∂DR

(
z + 4‖H‖2)2

|XT | e−
z
4

⎞⎠
1
2

. (4.3)

The Cauchy inequality implies

∣∣AH
∣∣2 =

∑
i,j

〈Bij , H〉2 ≥
∑
i

〈Bii, H〉2 ≥ (
∑

i 〈Bii, H〉)2

m
= ‖H‖4

m
. (4.4)

By the assumption that Mm is not a linear subspace, we can conclude that Mm is 
not maximal, i.e., H �≡ 0. Otherwise, by the proof of Theorem 4.2 in [27], we derive that 
M is a linear subspace, this yields the contradiction. Then there exists R0 > 0, such that 
for any R > R0, ∫

DR

∣∣AH
∣∣2 e− z

4 ≥ 1
m

∫
DR

‖H‖4e−
z
4 > 0.

Let

F (R) :=
∫
DR

∣∣AH
∣∣2 e− z

4 , G(R) :=
∫
DR

(
z + 4‖H‖2)2 e− z

4 .

By the Co-Area formula, we have

F (R) =
R∫

0

∫
∂Dr

∣∣AH
∣∣2 e− z

4

|∇√
z| =

R∫
0

⎛⎝re−
r2
4

∫
∂Dr

∣∣AH
∣∣2

|XT |

⎞⎠ dr,

G(R) =
R∫ ∫ (

z + 4‖H‖2)2 e− z
4

|∇√
z| =

R∫ ⎛⎝re−
r2
4

∫ (
z + 4‖H‖2)2

|XT |

⎞⎠ dr.
0 ∂Dr 0 ∂Dr
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It follows that

F ′(R) = Re−
R2
4

∫
∂DR

∣∣AH
∣∣2

|XT | , G′(R) = Re−
R2
4

∫
∂DR

(
z + 4‖H‖2)2

|XT | .

From (4.2) and (4.3), we obtain

4F (R)2 ≤ F ′(R) ·R−2G′(R).

Namely,

R2

G′(R) ≤ F ′(R)
4F (R)2 = −1

4

(
1

F (R)

)′
, ∀R > R0.

Therefore for any fixed r satisfying R > r > R0,

1
4(R2 − r2)2 =

⎛⎝ R∫
r

sds

⎞⎠2

≤
R∫
r

s2

G′(s)ds ·
R∫
r

G′(s)ds

≤ −1
4

(
1

F (R) − 1
F (r)

)
· (G(R) −G(r)) ,

which gives

(R2 − r2)2 ≤G(R)
F (r) (4.5)

We claim that ∫
Mm

∣∣AH
∣∣2 e− z

4 = ∞. (4.6)

In fact, let R go to infinity and then r go to infinity,

lim sup
R→∞

R4

G(R) ≤ lim inf
r→∞

1
F (r) = 1∫

Mm |AH |2e− z
4
≤ m∫

Mm ‖H‖4e−
z
4
.

This implies that

lim sup
R→∞

R4∫
DR

2z2e−
z
4 +

∫
DR

32‖H‖4e−
z
4
≤ lim sup

R→∞

R4

G(R) ≤ m∫
Mm ‖H‖4e−

z
4
. (4.7)

By Theorem 3.1, 
∫

m eαz < ∞ for any α < 0, so we can conclude that

M
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∫
DR

z2e−
z
4 ≤

∫
Mm

z2e−
z
4 < ∞. (4.8)

Thus from the inequality (4.7), we get

lim sup
R→∞

R4∫
DR

32‖H‖4e−
z
4
≤ m∫

Mm ‖H‖4e−
z
4
. (4.9)

If 
∫
Mm ‖H‖4e−

z
4 < ∞, then by (4.9), we conclude that

∞ >
m∫

Mm ‖H‖4e−
z
4
≥ lim sup

R→∞

R4∫
DR

32‖H‖4e−
z
4
≥ lim sup

R→∞

R4∫
Mm 32‖H‖4e−

z
4

= ∞.

This yields the contradiction. Hence∫
Mm

‖H‖4e−
z
4 = ∞. (4.10)

Then (4.6) follows from (4.4).
From (4.2), (4.3) and (4.4), we get

2
∫
DR

∣∣AH
∣∣2 e− z

4 ≤
∫
DR

ΔV ‖H‖2e−
z
4

≤

⎛⎝R

∫
∂DR

∣∣AH
∣∣2

|XT | e
− z

4

⎞⎠
1
2
⎛⎝R−1

∫
∂DR

(
z + 4

√
m
∣∣AH

∣∣)2
|XT | e−

z
4

⎞⎠
1
2

≤4
√
m

∫
∂DR

(
z

4
√
m

+
∣∣AH

∣∣)2

|XT | e−
z
4 . (4.11)

Set

F̂ (R) =
∫
DR

(∣∣AH
∣∣+ z

4
√
m

)2

e−
z
4 .

∀ε ∈
(
0, 1

2
)
, for given positive constant δ < ε

1−ε ,

F̂ (R) ≤(1 + δ)
∫
DR

∣∣AH
∣∣2 e− z

4 +
(

1 + 1
δ

)
· 1
16m

∫
DR

z2e−
z
4

≤(1 + δ)
∫ ∣∣AH

∣∣2 e− z
4 +

(
1 + 1

δ

)
· 1
16m

∫
m

z2e−
z
4 .

(4.12)
DR M
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Since δ < ε
1−ε , we get 1

1−ε − (1 + δ) > 0. By (4.6), we obtain

lim
R→∞

∫
DR

∣∣AH
∣∣2 e− z

4 = ∞.

Note that 
∫
Mm z2e−

z
4 < ∞ by (4.8). Thus there exists R1 > 0, such that when R > R1, 

we have ∫
DR

∣∣AH
∣∣2 e− z

4 >
1

1
1−ε − (1 + δ)

(
1 + 1

δ

)
· 1
16m

∫
Mm

z2e−
z
4 . (4.13)

Combining (4.12) with (4.13), it follows

F̂ (R) < 1
1 − ε

∫
DR

∣∣AH
∣∣2 e− z

4 . (4.14)

By the Co-Area formula, we obtain

F̂ (R) =
∫
DR

(∣∣AH
∣∣+ z

4
√
m

)2

e−
z
4 =

R∫
0

⎛⎜⎝r

∫
∂Dr

(∣∣AH
∣∣+ z

4
√
m

)2

|XT | e−
z
4

⎞⎟⎠ dr.

This implies that

F̂ ′(R) = R

∫
∂DR

(∣∣AH
∣∣+ z

4
√
m

)2

|XT | e−
z
4 . (4.15)

Thus from (4.11), (4.14) and (4.15), we get

0 <
1 − ε

2
√
m
F̂ (R) ≤ 1

R
F̂ ′(R),

which implies for some R2 > R1,

1 − ε

4
√
m

(
R2 −R2

2
)
≤ log F̂ (R)

F̂ (R2)
, ∀R > R2.

Namely, ∫
DR

∣∣AH
∣∣2 e− z

4 > (1 − ε) F̂ (R2)
exp

(
1−ε
4
√
m
R2

2

) · exp
(

1 − ε

4
√
m
R2
)
.

Thus for R sufficiently large, we have
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∫
DR

∣∣AH
∣∣2 e− z

4 ≥ exp
(

1 − 2ε
4
√
m

R2
)
. (4.16)

According to (4.5) and (4.10), as the similar reason to derive (4.14), for sufficiently large 
R, we obtain

(
R2 − r2)2 ≤

∫
DR

(
z + 4‖H‖2)2 e− z

4∫
Dr

|AH |2 e− z
4

≤
16(1 + ε)

∫
DR

‖H‖4e−
z
4 + Cε∫

Dr
|AH |2 e− z

4

≤
16(1 + 2ε)

∫
DR

‖H‖4e−
z
4∫

Dr
|AH |2 e− z

4
.

Choosing r = (1 − ε)R, by (4.16),

(
2ε− ε2)R4 ≤

16(1 + 2ε)
∫
DR

‖H‖4e−
z
4∫

D(1−ε)R
|AH |2 e− z

4
≤

16 (1 + 2ε)
∫
DR

‖H‖4e−
z
4

exp
(

1 − 2ε
4
√
m

(1 − ε)2R2
) .

Direct computation gives us

1
R2

(
log(2ε− ε2) + 4 logR

)
+ (1 − 2ε)(1 − ε)2

4
√
m

≤ 1
R2 log 16(1+2ε)+ 1

R2 log
∫
DR

‖H‖4e−
z
4 .

Letting R → ∞ in the above equality, we get

lim sup
R→∞

R2

log
(∫

DR
‖H‖4e−

z
4

) ≤ 4
√
m

(1 − 2ε) (1 − ε)2
.

Let ε go to zero, we conclude that

lim sup
R→∞

R2

log
(∫

DR
‖H‖4e−

z
4

) ≤ 4
√
m. �

Following the idea of the proof of Theorem 1.1, we give the

Proof of Theorem 1.3. Let BR :=
{
p ∈ Rm+n

n : z(p) ≤ R2} and DR := Mm ∩ BR. By 
(3.3), z is proper, thus DR is compact in Mm. Integration by parts gives us
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∫
DR

ΔV (logw) logwe− z
4 =

∫
DR

div
(
e−

z
4∇ logw

)
logw

=
∫
DR

div
(
e−

z
4 (∇ logw) logw

)
−
∫
DR

〈e− z
4∇ logw,∇ logw〉

=
∫

∂DR

〈
e−

z
4 (∇ logw) logw, XT

|XT |

〉
−
∫
DR

|∇ logw|2e− z
4 .

(4.17)
By Proposition 3.1 in [28], we get

ΔV (logw) ≥ ‖B‖2

w2 , (4.18)

where ‖B‖2 is the absolute value of the square of the second fundamental form.
From (4.17) and (4.18), we have

∫
DR

‖B‖2

w2 logwe− z
4 +

∫
DR

|∇ logw|2e− z
4 ≤

∫
∂DR

〈
e−

z
4 (∇ logw) logw, XT

|XT |

〉
. (4.19)

Applying the Cauchy-Schwarz inequality to the right hand side of (4.19), and using 
(3.4), we get

∫
∂DR

〈
e−

z
4 (∇ logw) logw, XT

|XT |

〉

≤
∫

∂DR

|∇ logw| logwe− z
4

≤

⎛⎝ ∫
∂DR

R|∇ logw|2
|XT | e−

z
4

⎞⎠
1
2
⎛⎝ ∫
∂DR

R−1(logw)2|XT |2
|XT | e−

z
4

⎞⎠
1
2

≤

⎛⎝ ∫
∂DR

R|∇ logw|2
|XT | e−

z
4

⎞⎠
1
2
⎛⎝ ∫
∂DR

R−1(logw)22C2
2w

2(z + 1)2

|XT | e−
z
4

⎞⎠
1
2

≤ C3

⎛⎝ ∫
∂DR

R|∇ logw|2
|XT | e−

z
4

⎞⎠
1
2
⎛⎝ ∫
∂DR

R3w2(logw)2

|XT | e−
z
4

⎞⎠
1
2

.

(4.20)

Combining (4.19) with (4.20), we have



16 H. Qiu, L. Sun / Journal of Functional Analysis 281 (2021) 109189
∫
DR

|∇ logw|2e− z
4 ≤ C3

⎛⎝ ∫
∂DR

R|∇ logw|2
|XT | e−

z
4

⎞⎠
1
2
⎛⎝ ∫
∂DR

R3w2(logw)2

|XT | e−
z
4

⎞⎠
1
2

. (4.21)

Let

F̃ (R) :=
∫
DR

|∇ logw|2e− z
4 , G̃(R) :=

∫
DR

w2(logw)2e− z
4 .

The Co-Area formula gives

F̃ (R) =
R∫

0

∫
∂Dr

|∇ logw|2e− z
4

|∇√
z| =

R∫
0

∫
∂Dr

r|∇ logw|2e− z
4

|XT | dr,

G̃(R) =
R∫

0

∫
∂Dr

w2(logw)2e− z
4

|∇√
z| =

R∫
0

∫
∂Dr

rw2(logw)2e− z
4

|XT | dr.

Then we get

F̃ ′(R) = Re−
R2
4

∫
∂DR

|∇ logw|2
|XT | , G̃′(R) = Re−

R2
4

∫
∂DR

w2(logw)2

|XT | .

By (4.21),

F̃ (R)2 ≤ C2
3 F̃

′(R) ·R2G̃′(R).

That is

1
R2G̃′(R)

≤ C2
3

F̃ ′(R)
(F̃ (R))2

= −C2
3

(
1

F̃ (R)

)′

, ∀R > 1.

Hence for any fixed r ∈ (1, R), we derive

(
log R

r

)2

=

⎛⎝ R∫
r

1
s
ds

⎞⎠2

≤
R∫
r

1
s2G̃′(s)

ds ·
R∫
r

G̃′(s)ds

≤− C2
3

(
1

F̃ (R)
− 1

F̃ (r)

)
· (G̃(R) − G̃(r))
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≤C2
3
G̃(R)
F̃ (r)

.

Let R go to infinity and then r go to infinity,

lim sup
R→∞

(logR)2

G̃(R)
≤ C2

3 lim inf
r→∞

1
F̃ (r)

= C2
3∫

Mm |∇ logw|2e− z
4
.

Since Mm is not a linear subspace, by (4.18) we know that w can not be a constant. 
Hence the right hand side of the above inequality is finite. It follows that

lim sup
R→∞

(logR)2∫
DR

w2(logw)2e− z
4
< ∞. �

5. Rigidity results for spacelike self-shrinkers

In this section, we shall give various rigidity results for spacelike self-shrinkers which 
can be viewed as the applications of Theorem 1.1 and Theorem 1.3.

By Theorem 1.1, we have

Corollary 5.1. Let X : Mm → Rm+n
n be an m-dimensional spacelike entire self-shrinking 

graph. Assume that the origin o ∈ Mm and Mm is not a linear subspace. Then the mean 
curvature satisfies

lim sup
R→∞

R2

log
(∫

DR
‖H‖3we−

z
4

) ≤ 4
√
m. (5.1)

Proof. (3.4) implies that

‖H‖4 ≤ 1
2‖H‖3|XT | ≤ C2‖H‖3w(z + 1). (5.2)

Then the conclusion follows from (1.3) and (5.2). �
As a consequence of Corollary 5.1, we obtain

Corollary 5.2. Let X : Mm → Rm+n
n be an m-dimensional spacelike entire self-shrinking 

graph. Assume that the origin o ∈ Mm. If the mean curvature satisfies ‖H‖2 ≤ Ceαz for 
any α < 1

6 + 1
6
√
m

, here C is a positive constant. Then Mm must be a linear subspace.

Proof. Choose α0 < 1
6 such that α < α0 + 1

6
√
m

. Suppose that Mm is not a linear 
subspace. The assumption implies that
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∫
DR

‖H‖3we−
z
4 ≤ C3/2e

3(α−α0)
2 R2

∫
DR

we

(
3α0
2 − 1

4

)
z
.

Since α0 < 1
6 , we get 3α0

2 − 1
4 < 0. Then by Theorem 3.1, 

∫
Mm we

(
3α0
2 − 1

4

)
z
< ∞. 

Therefore

lim sup
R→∞

R2

log
(∫

DR
‖H‖3we−

z
4

) ≥ 2
3 (α− α0)

> 4
√
m.

Comparing the above inequality with (5.1), we conclude that Mm is a linear sub-
space. �

By using Theorem 1.3 and Theorem 3.1, we derive the following rigidity result.

Corollary 5.3. Let X : Mm → Rm+n
n be an m-dimensional spacelike entire self-shrinking 

graph. Assume that the origin o ∈ Mm and the w-function satisfies

lim sup
x→∞

logw
z

<
1
4 .

Then Mm has to be a linear subspace.

Proof. Suppose that Mm is not a linear subspace. Let f(R) = max{z=R} w, since 

ΔV logw ≥ ‖B‖2

w2 > 0, then the maximum principle implies that f(R) is nondecreas-
ing in R. If f is bounded by some positive constant, then by using Theorem 3.1 and the 
assumption, we have ∫

Mm

w2(logw)2e− z
4 < ∞. (5.3)

Otherwise, lim
R→∞

f(R) = ∞, then for any ε > 0, we obtain log f(R) ≤ f(R) ε
2 when R is 

large. Therefore by the assumption, we can conclude that

f(R) < e
1−ε
4 R

for R large enough. It follows that

f(R)(log f(R))2 ≤ f(R)1+ε ≤ e
1−ε2

4 R, for R large.

Then by Theorem 3.1 again, we can also obtain (5.3). Since Mm is not a linear subspace, 
by (4.18), w can not be a constant, in particular, w �≡ 1, that is, 

∫
Mm w2(logw)2e− z

4 �= 0. 
Therefore, we have
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lim sup
R→∞

(logR)2∫
DR

w2(logw)2e− z
4

= ∞.

This is a contradiction with (1.4). �
By (3.2), Corollary 5.3 can be rewritten as

Corollary 5.4. Let Mm := { (x, u(x))|x ∈ Rm, u = (u1, u2, ..., un)} be an m-dimensional 
spacelike entire self-shrinking graph in Rm+n

n . Assume the origin o ∈ Mm and the induced 
metric (gij) satisfies

lim inf
|x|→∞

log det(gij(x))
|x|2 − |u(x)|2 > −1

2 ,

where gij(x) = δij −
∑n

α=1 u
α
i (x)uα

j (x). Then Mm is a linear subspace.

Proof. By (3.2), we have w = 1√
det(gij)

. Clearly, z = |x|2−|u(x)|2. Thus the conclusion 

follows from Corollary 5.3. �
Remark 5.5. Ding-Wang [15, Theorem 3] showed that a spacelike entire self-shrinking 
graph passing through the origin is a linear subspace under the condition that

lim
|x|→∞

log det(gij(x))
|x| = 0. (5.4)

Since det(gij) < 1, Ding-Wang’s assumption (5.4) implies that for any positive constant 
ε, we have

log det(gij)
|x| > −ε, as |x| → ∞.

By (3.3), the function z is proper, choosing ε = 1
4C1

, then we obtain

log det(gij)
z

≥ 2C1
log det(gij)

|x| > −2C1ε = −1
2 , as |x| → ∞.

Then by Corollary 5.4, the spacelike entire self-shrinking graph is a linear subspace. 
Hence the condition in Corollary 5.4 is weaker than the one in [15, Theorem 3].

Remark 5.6. If m = 1, then the growth condition is not necessary. In other words, the only 
entire graphic spacelike self-shrinking curve through the origin in the pseudo-Euclidean 
space R1+n

n has to be a linear subspace. In fact, assume that M1 = {(t, u1(t), . . . , un(t)) :
t ∈ R} is a spacelike self-shrinking curve, then
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uα
tt

1 −
∑n

β=1 u
β
t u

β
t

= 1
2 (tuα

t − uα) , ∀t ∈ R, α = 1, . . . , n. (5.5)

Since M1 contains the origin, we have u1(0) = · · · = un(0) = 0. Denote by uα
t (0) =

aα, α = 1, . . . , n, then {uα(t) = aαt, α = 1, . . . , n} is a solution to (5.5) and M1 is a 
linear subspace. By the uniqueness theorem of ODE system, we know that M1 has to 
be a linear subspace.

Remark 5.7. If one shows that spacelike self-shrinkers are the Type I singularity models 
of MCFs in pseudo-Euclidean spaces, then by applying the blow up analysis of MCFs 
and using Corollary 5.2 or 5.3, one might prove that the MCF does not develop any 
Type I singularity under certain conditions.

Now we give a nontrivial spacelike entire self-shrinking graph which does not contain 
the origin (cf. [24]).

Example 5.1. Consider a C2 function u : R → R satisfying

u′′

1 − u′ 2 = 1
2(tu′ − u), |u′| < 1. (5.6)

If we find a nontrivial solution u to (5.6), i.e., u is not a linear function, then

Mm =
{
(x1, x2, . . . , xm, u(x1), 0, . . . , 0) ∈ Rm+n

n : (x1, x2, . . . , xm) ∈ Rm
}

is a nontrivial entire spacelike self-shrinking graph in Rm+n
n , i.e., this graph is not an 

affine plane. According to Chen-Qiu’s result ([10]), this entire graphic self-shrinker can 
not be complete.

Indeed, we consider the following ODE{
w′′ = 1

2(tw′ − w)(1 − w′ 2),

w(0) = a ∈ (−∞, 0), w′(0) = b ∈ (−1, 1).

Assume the maximal existence interval is (−T1, T2) with T1, T2 ∈ (0, ∞] such that 
|w′(t)| < 1, ∀t ∈ (−T1, T2). Set φ = tw′ − w, then

φ′ = t

2
(
1 − w′ 2)φ.

Consider a function f ′ = t
2
(
1 − w′ 2) , f(0) = 0, then f ≥ 0 and e−fφ is a constant. In 

particular φ ≥ −a. Thus

(
tanh−1 w′)′ = 1

2 (tw′ − w) ≥ −a

2 .
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For t ∈ [0, T2), we have

w′ ≥ tanh
(
−at

2 + tanh−1 b

)
= − tanh

(
at

2 − tanh−1 b

)
, (5.7)

which implies

w ≥− 2
a

log cosh
(
−at

2 + tanh−1 b

)
+ 2

a
log cosh

(
tanh−1 b

)
+ a

≥− 2
a

(
−at

2 + tanh−1 b− log 2
)

+ 2
a

log cosh
(
tanh−1 b

)
+ a

≥t + 2
a

(
log 2 + 2 tanh−1 |b|

)
+ a.

Hence φ ≤ −a − 2
a

(
log 2 + 2 tanh−1 |b|

)
. Thus

(
tanh−1 w′)′ ≤ −a

2 − 1
a

(
log 2 + 2 tanh−1 |b|

)
,

which implies

w′ ≤ tanh
((

−a

2 − 1
a

(
log 2 + 2 tanh−1 |b|

))
t + tanh−1 b

)
. (5.8)

Then (5.7) and (5.8) implies that T2 = +∞.
For t ∈ (−T1, 0), a similar argument gives

− tanh
((

a

2 + 1
a

(
log 2 + 2 tanh−1 |b|

))
t− tanh−1 b

)
≤ w′ ≤ tanh

(
−at

2 + tanh−1 b

)
,

which implies that T1 = −∞.

The above example implies that for |t| > −a
2 ,

log
(
1 − w′ 2)

t2 − w2 ≥
log
(
1 − w′ 2)

−2a|t| − a2

≥
2 log cosh

(
−
(
a
2 + 1

a

(
log 2 + 2 tanh−1 |b|

))
|t| + tanh−1 |b|

)
2a|t| + a2 ,

and we get

lim inf
|t|→∞

log
(
1 − w′ 2)

t2 − w2 ≥ −1
2 −

(
log 2 + 2 tanh−1 |b|

)
a2 → −1

2 , as a → −∞.

We also have
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a + 2
a

(
log 2 + 2 tanh−1 |b|

)
≤ lim inf

|t|→∞

log
(
1 − w′ 2)
|t|

≤ lim sup
|t|→∞

log
(
1 − w′ 2)
|t| ≤ a → −∞, as a → −∞.

Motivated by Corollary 5.4 and the above example, we would like to propose the following

Conjecture 1. Let u =
(
u1, u2, ..., un

)
be an entire smooth solution to

m∑
i,j=1

gij(x)uα
ij(x) = 1

2

(
m∑
i=1

xiu
α
i (x) − uα(x)

)
, x ∈ Rm, α = 1, . . . , n,

where gij(x) = δij −
∑n

α=1 u
α
i (x)uα

j (x) and 
(
gij(x)

)
1≤i,j≤m

is the inverse matrix of 
(gij(x))1≤i,j≤m. Assume u1(0) = · · · = um(0) = 0 and

lim inf
|x|→∞

log det(gij(x))
|x|2 − |u(x)|2 ≥ −1

2 ,

then uα(x) are linear functions for each α = 1, . . . , n.

Remark 5.8. (1) As it was stated in the above conjecture, the optimal situation is ex-
pected that the lower bound −1

2 can be achieved.
(2) A complete spacelike submanifold Mm in Rm+n

n is an entire graph (cf. [2]), but the 
converse claim is not always the case. Chen-Qiu [10] showed that any complete spacelike 
self-shrinker Mm in Rm+n

n is an affine plane, thus the entire spacelike self-shrinking graph 
Mm in Example 5.1 is not complete.

(3) From the computation in Example 5.1, we can see that Ding-Wang’s assumption 
(5.4) is not satisfied.
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