
Calc. Var.           (2024) 63:81 
https://doi.org/10.1007/s00526-024-02706-8 Calculus of Variations

Topological degree for Chern–Simons Higgs models on finite
graphs

Jiayu Li1 · Linlin Sun2 · Yunyan Yang3

Received: 9 September 2023 / Accepted: 6 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Let (V , E) be a finite connected graph. We are concerned about the Chern–Simons Higgs
model

�u = λeu(eu − 1) + f , (0.1)

where� is the graph Laplacian, λ is a real number and f is a function on V . When λ > 0 and
f = 4π

∑N
i=1 δpi , N ∈ N, p1, · · · , pN ∈ V , the equation (0.1) was investigated by Huang

et al. (Commun Math Phys 377:613–621, 2020) and Hou and Sun (Calc Var 61:139, 2022)
via the upper and lower solutions principle. We now consider an arbitrary real number λ and
a general function f , whose integral mean is denoted by f , and prove that when λ f < 0,
the equation (0.1) has a solution; when λ f > 0, there exist two critical numbers �∗ > 0
and �∗ < 0 such that if λ ∈ (�∗,+∞) ∪ (−∞,�∗), then (0.1) has at least two solutions,
including one local minimum solution; if λ ∈ (0,�∗) ∪ (�∗, 0), then (0.1) has no solution;
while if λ = �∗ or �∗, then (0.1) has at least one solution. Our method is calculating the
topological degree and using the relation between the degree and the critical group of a related
functional. Similar method is also applied to the Chern–Simons Higgs system, and a partial
result for the multiple solutions of the system is obtained.
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1 Introduction

The Chern–Simons Higgs model, introduced by Hong, Kim, Pac [19] and Jackiw, Weinberg
[27], has always attracted the attention of many mathematicians in the fields of geometry
and physics, see for examples [2, 3, 9, 10, 31, 40, 41, 43, 46]. Among many versions, the
self-dual Chern–Simons Higgs vortex equation on a flat 2-torus � can be written as

�u = 4

k2
eu(eu − 1) + 4π

k0∑

i=1

miδpi , (1)

where k > 0 is the Chern–Simons constant, mi ∈ N, pi ∈ �, i = 1, · · · , k0. The solution of
the above equation is called a vertex solution, each pi is called a vertex point, and mi stands
for the multiplicity of pi . From the view of physics, the vortex points are closely related to
the local maximum point of the magnetic flux in the Chern–Simons Higgs model. Let u0 be
a solution of

{
�u0 = − 4πN

|�| + 4π
∑k0

i=1 miδpi
∫
�
u0dvg = 0,

where N = ∑k0
i=1 mi . Set v = u − u0. Then (1) can be written in a more favourable form

�v = λhev(hev − 1) + 4πN

|�| , (2)

where λ = 4
k2

and h = eu0 is a positive function on �. A solution v of (2) is called of finite

energy if v ∈ W 1,2(�), a usual Sobolev space. Indeed, it is known that the corresponding
physical energy of the solution v is finite if u ∈ W 1,2(�). Thus, solutions of finite energy
are physically meaningful in (2) and there have been many existence results for W 1,2(�)

solutions of (2), see [2, 8, 9, 40, 41, 43–45] and the references therein. By using the principle
of upper and lower solutions, Caffarelli and Yang constructed a maximal solution. In addition
to the above references, [10, 29] also indicated that the Eq. (2) admits a variational structure.

Different from the theoretical significance on Riemann surfaces, the analysis on graphs
is very important for applications, such as image processing, data mining, network and so
on. Among lots of directions, partial differential equations arising in geometry or physics are
worth studying on graphs. Various equations, including the heat equation [20, 26, 32, 33], the
Fokker-Planck and Schrödinger equations [6, 7], have been studied bymanymathematicians.
In particular, Grigor’yan, Lin and Yang [13–15] studied the existence of solutions for a
series of nonlinear elliptic equations on graphs by using the variational methods. In this
direction, Zhang, Zhao, Han and Shao [17, 18, 49] obtained nontrivial solutions to nonlinear
Schrödinger equations with potential wells. Similar problems on infinite metric graphs were
studied by Akduman-Pankov [1]. The Kazdan-Warner equation was extended by Keller-
Schwarz [28] to canonically compactifiable graphs. Semi-linear heat equations on locally
finite graphs were studied by Ge, Jiang, Lin and Wu [12, 32, 33]. For other related works,
we refer the readers to [11, 16, 22, 23, 34–36, 38, 39, 47, 48, 50] and the references therein.

To describe the Chern–Simons Higgs model in the graph setting, we introduce some
notations. Let (V , E) be a connected finite graph, where V is the set of vertices and E is
the set of edges. Let μ : V → (0,+∞) and {wxy : xy ∈ E} be its measure and weights
respectively. The weightwxy is always assumed to be positive and symmetric. The Laplacian
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of a function u : V → R reads as

�u(x) = 1

μ(x)

∑

y∼x

wxy(u(y) − u(x)),

where y ∼ x means y is adjacent to x , i.e. xy ∈ E . The gradient of u is defined as

∇u(x) =
(√

wxy1

2μ(x)
(u(y1) − u(x)), · · · ,

√
wxy�x

2μ(x)
(u(y�x ) − u(x))

)

,

where {y1, · · · , y�x } are all distinct points adjacent to x . Clearly, such an �x is unique and
∇u(x) ∈ R

�x . The integral of u is given by
∫

V
udμ =

∑

x∈V
μ(x)u(x).

Now we consider an analog of (2) on a connected finite graph, namely

�u = λeu(eu − 1) + f in V , (3)

where λ ∈ R, f : V → R is a function. It was proved by Huang, Lin and Yau [24] that
if λ > 0 and f = 4π

∑N
i=1 δpi , there exists a critical number λ∗ > 0 such that (3) has a

solution when λ > λ∗, while (3) has no solution when 0 < λ < λ∗. The critical case λ = λ∗
was solved by Hou and Sun [21], who proved that (3) has also a solution. Such results are
essentially based on the method of upper and lower solutions principle. This together with
variational method may lead to existence results for other forms of Chern–Simons Higgs
models, see Chao and Hou [5]. Recently, a more delicate analysis was employed by Huang,
Wang and Yang [25] to get existence of solutions of the Chern–Simons Higgs system.

Topological degree theory is a powerful tool in studying partial differential equations in
the Euclidean space or Riemann surfaces, see for example Li [30]. It was first used by Sun and
Wang [42] to solve the Kazdan-Warner equation on finite graphs. Very recently, it was also
employed by Liu [37] to deal with the mean field equation. Our aim is to use this powerful
tool to study the Chern–Simons Higgs model. The first and most important step is to get a
priori estimate for solutions, say

Theorem 1 Let (V , E) be a connected finite graph with symmetric weights, i.e. wxy = wyx

for all xy ∈ E. Let σ ∈ [0, 1], λ and f satisfy

�−1 ≤ |λ| ≤ �, �−1 ≤
∣
∣
∣
∣

∫

V
f dμ

∣
∣
∣
∣ ≤ �, ‖ f ‖L∞(V ) ≤ � (4)

for some real number � > 0. If u is a solution of

�u = λeu(eu − σ) + f in V , (5)

then there exists a constant C, depending only on � and the graph V , such that |u(x)| ≤ C
for all x ∈ V .

When σ = 1, the Eq. (5) is exactly (3). In the case λ > 0 and f = 4π
∑N

i=1 δpi , where
p1, · · · , pN ∈ V and N ∈ N, let λ∗ be the critical number in [24]. Then for any λk > λ∗
with λk → λ∗ as k → ∞, there exists a solution uλk of (3) with λ = λk , k = 1, 2, · · · . It
follows from Theorem 1 that (uλk ) is uniformly bounded in V . Hence up to a subsequence,
(uλk ) uniformly converges to some u∗, which is a solution of (3) with λ = λ∗. This gives
another proof of a result of Hou and Sun [21].
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Denote X = L∞(V ) and define a map F : X → X by

F(u) = −�u + λeu(eu − 1) + f . (6)

The second step is to calculate the topological degree of F by using its homotopic invariance
property.

Theorem 2 Let (V , E) be a connected finite graph with symmetric weights, and F : X → X
be a map defined by (6). Suppose that λ

∫
V f dμ �= 0. Then there exists a large number

R0 > 0 such that for all R ≥ R0,

deg(F, BR, 0) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if λ > 0,
∫
V f dμ < 0

0 if λ
∫
V f dμ > 0

−1 if λ < 0,
∫
V f dμ > 0,

where BR = {u ∈ X : ‖u‖L∞(V ) < R} is a ball in X.

As an application of the above topological degree, our existence results for the Chern–
Simons Higgs model read as follows:

Theorem 3 Let (V , E) be a connected finite graph with symmetric weights. Then we have
the following:

(a) If λ
∫
V f dμ < 0, then the Eq. (3) has a solution;

(b) If λ
∫
V f dμ > 0, then two subcases are distinguished: (i)

∫
V f dμ > 0. There exists a

real number �∗ > 0 such that when λ > �∗, (3) has at least two different solutions;
when 0 < λ < �∗, (3) has no solution; when λ = �∗, (3) has at least one solution; (i i)∫
V f dμ < 0. There exists a real number �∗ < 0 such that when λ < �∗, (3) has at
least two different solutions; when �∗ < λ < 0, (3) has no solution; when λ = �∗, (3)
has at least one solution.

We remark that Case (b) (i) includes λ > 0 and f = 4π
∑N

i=1 δpi as a special case,
which was studied in [5, 21, 24, 25]. In the subcase λ > �∗ > 0 or λ < �∗ < 0, we
shall construct a local minimum solution, and then use the topological degree to obtain the
existence of another solution. Our arguments are essentially different from those in [5, 25,
36]. Note that a solution of (3) is a critical point of the functional Jλ : X → R defined by

Jλ(u) = 1

2

∫

V
|∇u|2dμ + λ

2

∫

V
(eu − 1)2dμ +

∫

V
f udμ. (7)

Here a local minimum solution of (3) means a local minimum critical point of Jλ.

Also we consider the Chern–Simons Higgs system
{

�u = λev(eu − 1) + f

�v = λeu(ev − 1) + g,
(8)

where λ is a real number, and f , g are functions on V . Similar to the single equation, we
need also a priori estimate.
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Theorem 4 Let (V , E) be a connected finite graph with symmetric weights. Suppose that σ ∈
[0, 1], λ, η are two positive real numbers, f , g are two functions verifying that

∫
V f dμ > 0

and
∫
V gdμ > 0. If (u, v) is a solution of the system

{
�u = λev(eu − σ) + f

�v = ηeu(ev − σ) + g,
(9)

then there exists a constant C, depending only on λ, η, f , g and the graph V , such that

‖u‖L∞(V ) + ‖v‖L∞(V ) ≤ C .

To compute the topological degree, we define a map F : X × X → X × X by

F (u, v) = (−�u + λev(eu − 1) + f ,−�v + ηeu(ev − 1) + g). (10)

Theorem 5 Let (V , E) be a connected finite graph with symmetric weights, and F be a map
defined by (10). If λ > 0, η > 0,

∫
V f dμ > 0 and

∫
V gdμ > 0, then there exists a large

number R0 > 0 such that for all R ≥ R0,

deg(F , BR, (0, 0)) = 0,

where BR = {(u, v) ∈ X × X : ‖u‖L∞(V ) + ‖v‖L∞(V ) < R} is a ball in X × X.

Define a functional Jλ : X × X → R by

Jλ(u, v) =
∫

V
∇u∇vdμ + λ

∫

V
(eu − 1)(ev − 1)dμ +

∫

V
( f v + gu)dμ. (11)

Note that for all (φ, ψ) ∈ X × X ,

〈J ′
λ(u, v), (φ, ψ)〉 = d

dt

∣
∣
∣
∣
t=0

J(u + tφ, v + tψ)

=
∫

V

{(−�v + λeu(ev − 1) + g
)
φ + (−�u + λev(eu − 1) + f

)
ψ

}
dμ.

(12)

Clearly (u, v) is a critical point of Jλ if and only if it is a solution of the system (8). As a
consequence of Theorem 5, we have the following

Theorem 6 Let (V , E) be a connected finite graphwith symmetricweights,λ > 0,
∫
V f dμ >

0,
∫
V gdμ > 0, and Jλ be a functional defined by (11). If either Jλ has a non-degenerate

critical point, or Jλ has a local minimum critical point, then it must have another critical
point.

It should be remarked that Theorem 6 gives another solution of (8) under the condition
that Jλ has a non-degenerate or a local minimum critical point beforehand. So it is only a
partial result for the problem of multiple solutions of the system (8).

The remaining part of this paper is organized as follows: In Sect. 2, we give a priori
estimate for solutions of (3) (Theorem 1); The topological degree of F : X → X (Theorem 2)
was calculated in Sect. 3; In Sect. 4, we prove the existence result (Theorem 3); The priori
estimate and existence of solutions of the Chern–Simons Higgs system (Theorems 4, 5 and
6) are discussed in Sect. 5.
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2 A priori estimate

In this section, we shall prove Theorem 1. In order to provide readers with a clear under-
standing of the proof, we demonstrate the entire process from simple cases to complex cases.
Precisely the proof will be divided into several lemmas as below.

The first priori estimate is for fixed λ and f .

Lemma 7 Suppose that u is a solution of (3), where λ �= 0 and
∫
V f dμ �= 0. Then there

exists a constant C, depending only on λ, f and the graph V , such that |u(x)| ≤ C for all
x ∈ V .

Proof If u is a solution of (3), then integration by parts gives

0 =
∫

V
�udμ = λ

∫

V
eu(eu − 1)dμ +

∫

V
f dμ. (13)

Firstly, we show that u has a uniform upper bound.With no loss of generality, wemay assume
maxV u > 0. For otherwise, u has already upper bound 0. Observing

∣
∣
∣
∣

∫

u<0
eu(eu − 1)dμ

∣
∣
∣
∣ ≤ 1

4
|V |,

we derive from (13) that

∫

u≥0
eu(eu − 1)dμ ≤ a := 1

4
|V | + 1

|λ|
∣
∣
∣
∣

∫

V
f dμ

∣
∣
∣
∣ .

This together with the fact
∫

u≥0
eu(eu − 1)dμ =

∑

x∈V , u(x)≥0

μ(x)eu(x)(eu(x) − 1) ≥ μ0e
maxV u(emaxV u − 1)

leads to

max
V

u ≤ log
1 + √

1 + 4a/μ0

2
, (14)

where μ0 = minx∈V μ(x) > 0, since V is finite.
Secondly, we prove that u has also a uniform lower bound. To see this, in view of (3) and

(14), we calculate for any x ∈ V ,

|�u(x)| ≤ |λ|
∣
∣
∣eu(x)(eu(x) − 1)

∣
∣
∣ + | f (x)|

≤ |λ|(e2u(x) + eu(x)) + | f (x)|
≤ |λ|

(
(1 + √

1 + 4a/μ0)
2

4
+ 1 + √

1 + 4a/μ0

2

)

+ ‖ f ‖L∞(V )

=: b.
Hence, there holds

‖�u‖L∞(V ) ≤ b. (15)
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We may assume V = {x1, · · · , x�}, u(x1) = maxV u, u(x�) = minV u, and without loss of
generality x1x2, x2x3, · · · , x�−1x� is the shortest path connecting x1 and x�. It follows that

0 ≤ u(x1) − u(x�) ≤
�−1∑

j=1

|u(x j ) − u(x j+1)|

≤
√

� − 1√
w0

⎛

⎝
�−1∑

j=1

wx j x j+1(u(x j ) − u(x j+1))
2

⎞

⎠

1/2

≤
√

� − 1√
w0

(∫

V
|∇u|2dμ

)1/2

, (16)

where w0 = minx∈V , y∼x wxy > 0. Denoting u = 1
|V |

∫
V udμ, we obtain by integration by

parts
∫

V
|∇u|2dμ = −

∫

V
(u − u)�udμ

≤
(∫

V
(u − u)2dμ

)1/2 (∫

V
(�u)2dμ

)1/2

≤
(

1

λ1

∫

V
|∇u|2dμ

)1/2 (∫

V
(�u)2dμ

)1/2

,

which gives
∫

V
|∇u|2dμ ≤ 1

λ1

∫

V
(�u)2dμ ≤ 1

λ1
‖�u‖2L∞(V )|V |, (17)

where λ1 = infv=0,
∫
V v2dμ=1

∫
V |∇v|2dμ > 0. Combining (16) and (17), we conclude

max
V

u − min
V

u ≤
√

(� − 1)|V |
w0λ1

‖�u‖L∞(V ). (18)

We remark that (18) holds for arbitrary function u, such an inequality was obtained by Sun
and Wang [42] by using the equivalence of all norms in a finite dimensional vector space,
and here we give an explicit constant instead of C . The power of (18) is evident. In view of
(15), we have

max
V

u − min
V

u ≤ c0 := b

√
(� − 1)|V |

w0λ1
. (19)

Coming back to (13), we have
∫

V
eu(eu − 1)dμ = c1 := −1

λ

∫

V
f dμ. (20)

By the assumptions λ �= 0 and
∫
V f dμ �= 0, we know c1 �= 0. Now we claim that

max
V

u > −A := logmin

{

1,
|c1|
4|V |

}

. (21)
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For otherwise, maxV u ≤ −A, which together with (20) implies

|c1| =
∣
∣
∣
∣

∫

V
eu(eu − 1)dμ

∣
∣
∣
∣

≤
∫

V
(e2u + eu)dμ

≤ (e2maxV u + emaxV u)|V |
≤ 2e−A|V |
<

|c1|
2

.

This contradicts c1 �= 0, and thus confirms our claim (21). Inserting (21) into (19), we obtain

−A − c0 ≤ min
V

u ≤ max
V

u ≤ log
1 + √

1 + 4a/μ0

2
,

as we desired. ��
The second priori estimate is for the changing λ and f .

Lemma 8 Let u be a solution of (3). If λ and f satisfy (4), then there exists a constant C,
depending only on � and the graph V , such that |u(x)| ≤ C for all x ∈ V .

Proof It suffices to modify the argument in the proof of Lemma 7.
Similar to (14), we first have the upper bound estimate

max
V

u ≤ log
1 + √

1 + 4a/μ0

2
, (22)

where μ0 = minx∈V μ(x) and a = |V | + �2. Next, instead of (19), we have

max
V

u − min
V

u ≤ c0 = b

√
(� − 1)|V |

w0λ1
, (23)

where λ1 = infv=0,
∫
V v2dμ=1

∫
V |∇v|2dμ, � denotes the number of all points of V , w0 =

minx∈V , y∼x wxy and

b = �

(
(1 + √

1 + 4a/μ0)
2

4
+ 1 + √

1 + 4a/μ0

2
+ 1

)

.

To proceed, we shall show

max
V

u > −A = logmin

{

1,
1

4|V |�2

}

. (24)

Suppose not. We have maxV u ≤ −A and

1

�2 ≤
∣
∣
∣
∣
1

λ

∫

V
f dμ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

V
eu(eu − 1)dμ

∣
∣
∣
∣

≤
∫

V
(e2u + eu)dμ

≤ 2e−A|V |
<

1

2�2 ,
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which is impossible. Thus (24) holds. Combining (22), (23) and (24), we get the desired
result. ��

The third priori estimate is not only for changing λ and f , but also for the changing
parameter σ .

Lemma 9 Let σ ∈ [0, 1], λ and f satisfy (4) for some real number � > 0. If u is a solution
of (5), then there exists a constant C, depending only on � and the graph V , such that
|u(x)| ≤ C for all x ∈ V .

Proof If u is a solution of (5), then integration by parts gives

0 =
∫

V
�udμ = λ

∫

V
eu(eu − σ)dμ +

∫

V
f dμ.

Similar to (14), keeping in mind σ ∈ [0, 1], we first have the same upper bound estimate as
(22), namely

max
V

u ≤ log
1 + √

1 + 4a/μ0

2
,

where μ0 = minx∈V μ(x) and a = |V | + �2. Next, we have the same estimates as (23) and
(24), which is independent of the parameter σ ∈ [0, 1]. In particular

max
V

u > −A = logmin

{

1,
1

4|V |�2

}

.

This ends the proof of the lemma, and completes the proof of Theorem 1. ��

3 Topological degree

In this section, we shall prove Theorem 2. Precisely we shall compute the topological degree
of certain maps related to the Chern–Simons Higgs model.

Proof of Theorem 2 Assume V = {x1, · · · , x�}. Let X = L∞(V ). We may identify X with
the Euclidean space R

�. Without causing ambiguity, we define a map F : X × [0, 1] → X
by

F(u, σ ) = −�u + λeu(eu − σ) + f , (u, σ ) ∈ X × [0, 1].
Obviously, F is a smooth map. For the fixed real number λ and the fixed function f , since
λ f �= 0, there must exist a large number � > 0 such that

�−1 ≤ |λ| ≤ �, �−1 ≤
∣
∣
∣
∣

∫

V
f dμ

∣
∣
∣
∣ ≤ �, ‖ f ‖L∞(V ) ≤ �. (25)

Here and in the sequel, f denotes the integral mean of a function f . Then it follows from
Theorem1 that there exists a constant R0 > 0, depending only on� and the graphV , such that
for all σ ∈ [0, 1], all solutions of F(u, σ ) = 0 satisfy ‖u‖L∞(V ) < R0. Denote a ball centered
at 0 ∈ X with radius r by Br ⊂ X , and its boundary by ∂Br = {u ∈ X : ‖u‖L∞(V ) = r}.
Thus we conclude

0 /∈ F(∂BR, σ ), ∀σ ∈ [0, 1], ∀R ≥ R0.

123
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By the homotopic invariance of the topological degree, we have

deg(F(·, 1), BR, 0) = deg(F(·, 0), BR, 0), ∀R ≥ R0. (26)

Given any ε > 0, we define another smooth map Gε : X × [0, 1] → X by

Gε(u, t) = −�u + λe2u + (t + (1 − t)ε) f , (u, t) ∈ X × [0, 1].
Notice that

∣
∣
∣
∣(t + (1 − t)ε)

∫

V
f dμ

∣
∣
∣
∣ ≥ min{1, ε}

∣
∣
∣
∣

∫

V
f dμ

∣
∣
∣
∣ , ∀t ∈ [0, 1].

Applying Theorem 1 again, we find a constant Rε > 0, depending only on ε,� and the graph
V , such that all solutions u of Gε(u, t) = 0 satisfy ‖u‖L∞(V ) < Rε for all t ∈ [0, 1]. This
implies

0 /∈ Gε(∂BRε , t), ∀t ∈ [0, 1].
Hence the homotopic invariance of the topological degree leads to

deg(Gε(·, 1), BRε , 0) = deg(Gε(·, 0), BRε , 0). (27)

To calculate deg(Gε(·, 0), BRε , 0), we need to understand the solvability of the equation

Gε(u, 0) = −�u + λe2u + ε f = 0. (28)

Now we claim two properties of solutions of (28): (i) If λ f < 0, then there exists an ε0 > 0
such that for any ε ∈ (0, ε0), (28) has a unique solution uε , which satisfies e2uε ≤ Cε, where
C is a constant depending only on � and the graph V ; (i i) If λ f > 0, then (28) has no
solution for all ε > 0.

To see Claim (i), for any ε > 0, we let vε be the unique solution of the equation
{

�v = ε f − ε f in V

v = 0.

Then the solvability of (28) is equivalent to that of the equation

�w = λe2vε e2w + ε f . (29)

Note that the existence of solutions to (29), under the assumptions that ε is sufficiently small
and λ f < 0, follows from ([13], Theorems 2 and 4). Hence there exists some ε1 > 0 such
that if 0 < ε < ε1, then the Eq. (28) has a solution uε . Integrating both sides of (28), we
have by (25),

∫

V
e2uεdμ = − ε

λ

∫

V
f dμ ≤ �2ε,

which leads to

e2uε (x) ≤ �2

μ0
ε, ∀x ∈ V , (30)

where μ0 = minx∈V μ(x). We also need to prove the uniqueness of the solution. Let ϕ be
an arbitrary solution of (28), namely it satisfies

�ϕ = λe2ϕ + ε f . (31)
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The same procedure as above gives
∫

V
e2ϕdμ ≤ �2ε, e2ϕ(x) ≤ �2

μ0
ε for all x ∈ V . (32)

Subtracting (31) from (28) and integrating by parts, we have

0 =
∫

V
�(uε − ϕ)dμ = λ

∫

V
(e2uε − e2ϕ)dμ,

which leads to

min
V

(uε − ϕ) < 0 < max
V

(uε − ϕ).

As a consequence, there holds

|uε − ϕ| ≤ max
V

(uε − ϕ) − min
V

(uε − ϕ). (33)

Also we derive from (28), (30), (31), and (32),

|�(uε − ϕ)(x)| =
∣
∣
∣λ

(
e2uε (x) − e2ϕ(x)

)∣
∣
∣

≤ 2�
(
e2uε (x) + e2ϕ(x)

)
|uε(x) − ϕ(x)|

≤ 4�3

μ0
ε|uε(x) − ϕ(x)|. (34)

Combining (18), (33) and (34), we obtain

max
V

(uε − ϕ) − min
V

(uε − ϕ) ≤
√

(� − 1)|V |
w0λ1

4�3

μ0
ε

(

max
V

(uε − ϕ) − min
V

(uε − ϕ)

)

.(35)

Choose

ε0 = min

{

ε1,

√
w0λ1

(� − 1)|V |
μ0

8�3

}

.

If we take 0 < ε < ε0, then (35) implies ϕ ≡ uε on V , and thus (28) has a unique solution.
Hence (i) holds.

To see Claim (i i), in the case λ f > 0, if (28) has a solution u, then there holds

0 =
∫

V
�udμ = λ

∫

V
e2udμ +

∫

V
f dμ,

which is impossible. This confirms (i i), and our claims hold.
Let us continue to prove the theorem. Note that −� : X → X is a nonnegative definite

symmetric operator, its eigenvalues are written as

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λ�−1,

where � is the number of all points in V . By Claim (i), in the case λ f < 0, we may choose
a sufficiently small ε > 0 such that Gε(u, 0) = 0 has a unique solution uε verifying

2|λ|e2uε (x) < λ1.

A straightforward calculation shows

DGε(uε, 0) = −� + 2λe2uε I,
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where we identify the linear operator −� with the � × � matrix corresponding to −�, and
denote the � × � diagonal matrix diag[1, 1, · · · , 1] by I. Clearly
deg(Gε(·, 0), BRε , 0) = sgn det (DGε(uε, 0)) = sgn

{
2λe2uε (x)��−1

j=1(λ j + 2λe2uε (x))
}

= sgnλ.

This together with (26) and (27) leads to

deg(F(·, 1), BRε , 0) = deg(F(·, 0), BRε , 0)

= deg(Gε(·, 1), BRε , 0)

= deg(Gε(·, 0), BRε , 0)

= sgnλ.

By Claim (i i), in the case λ f > 0, since Gε(u, 0) = 0 has no solution, we obtain

deg(F(·, 1), BRε , 0) = deg(Gε(·, 0), BRε , 0) = 0.

Thus the proof of Theorem 2 is completed. ��

4 Existence results

In this section, we shall prove Theorem 3 by using the topological degree in Theorem 2.
Proof of Theorem 3 (a).
If λ f < 0, then by Theorem 2, we find some large R0 > 1 such that

deg(F, BR0 , 0) �= 0.

Thus the Kronecker’s existence theorem implies (3) has a solution. ��
In the remaining part of this section, we always assume λ f > 0. We first prove that (3)

has a local minimum solution for large |λ|, say
Lemma 10 If |λ| is chosen sufficiently large, then the Eq. 3 has a local minimum solution.

Proof Let us first consider the subcase λ > 0 and f > 0. Set

Lλu = −�u + λeu(eu − 1) + f . (36)

For real numbers A and λ, there hold

LλA = λeA(eA − 1) + f , Lλ log
1

2
= −1

4
λ + f .

Clearly, taking sufficiently large A > 1 and λ > 1, we have

LλA > 0, Lλ log
1

2
< 0. (37)

Recall the functional Jλ : X = L∞(V ) → R defined by (7). Since X ∼= R
�, Jλ ∈ C2(X , R),

and {u ∈ X : log 1
2 ≤ u ≤ A} is a bounded closed subset of X , it is easy to find some uλ ∈ X

satisfying log 1
2 ≤ uλ(x) ≤ A for all x ∈ V and

Jλ(uλ) = min
log 1

2≤u≤A
Jλ(u). (38)

We claim that

log
1

2
< uλ(x) < A for all x ∈ V . (39)
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Suppose not. There must hold uλ(x0) = log 1
2 for some x0 ∈ V , or uλ(x1) = A for some

x1 ∈ V . If uλ(x0) = log 1
2 , then we take a small ε > 0 such that

log
1

2
≤ uλ(x) + tδx0(x) ≤ A, ∀x ∈ V , ∀t ∈ (0, ε).

On one hand, in view of (37) and (38), we have

0 ≤ d

dt

∣
∣
∣
∣
t=0

Jλ(uλ + tδx0)

=
∫

V

(−�uλ + λeuλ (euλ − 1) + f
)
δx0dμ

= −�uλ(x0) + λeuλ(x0)(euλ(x0) − 1) + f (x0)

< −�uλ(x0). (40)

On the other hand, since uλ(x) ≥ uλ(x0) for all x ∈ V , we conclude �uλ(x0) ≥ 0, which
contradicts (40). Hence uλ(x) > log 1

2 for all x ∈ V . In the same way, we exclude the
possibility of uλ(x1) = A for some x1 ∈ V . This confirms our claim (39). Combining (38)
and (39), we conclude that uλ is a local minimum critical point of Jλ, in particular, uλ is a
solution of (3).

Now we consider the subcase λ < 0 and f < 0. Let ϕ be the unique solution of
{

�ϕ = f − f

ϕ = 0.

Using the notation of the operator Lλ given by (36), we have

Lλ(ϕ − A) = −�ϕ + λeϕ−A(eϕ−A − 1) + f

= λeϕ−A(eϕ−A − 1) + f

< 0 (41)

and

Lλ(log
1

2
) = λelog

1
2 (elog

1
2 − 1) + f

= −λ

4
+ f

> 0,

provided that λ < 4minV f and A > 1 is chosen sufficiently large. Similar to (38) and (39),
there exists some uλ satisfying ϕ(x) − A < uλ(x) < log 1

2 for all x ∈ V and

Jλ(uλ) = min
ϕ−A≤u≤log 1

2

Jλ(u) = min
ϕ−A<u<log 1

2

Jλ(u).

This implies uλ is a local minimum solution of (3). ��
To proceed, we also need the following:

Lemma 11 If λ1 > 0 such that the equation Lλ1u = 0 has a solution uλ1 , then for any
λ > λ1, we have

Lλ

(

uλ1 + log
λ1

λ

)

< 0.
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Similarly, if λ2 < 0 such that Lλ2uλ2 = 0, then for any λ < λ2, there hods

Lλ

(

uλ2 + log
λ2

λ

)

> 0.

Proof If λ > λ1 > 0, then

Lλ

(

uλ1 + log
λ1

λ

)

= −�uλ1 + λ1e
uλ1

(
λ1

λ
euλ1 − 1

)

+ f

< −�uλ1 + λ1e
uλ1 (euλ1 − 1) + f

= 0.

If λ < λ2 < 0, then

Lλ

(

uλ2 + log
λ2

λ

)

= −�uλ2 + λ2e
uλ2

(
λ2

λ
euλ2 − 1

)

+ f

> −�uλ2 + λ2e
uλ2

(
euλ2 − 1

) + f

= 0,

as we desired. ��
As a consequence, we have

Lemma 12 Assume Lλ1uλ1 = Lλ2uλ2 = 0 on V . If either λ > λ1 > 0 or λ < λ2 < 0, then
the equation (3) has a local minimum solution uλ.

Proof Assume λ > λ1 > 0. Let A > 1 be a sufficiently large constant such that LλA > 0
and uλ1 + log λ1

λ
< A on V . Then there exists some uλ such that

Jλ(uλ) = min
uλ1+log λ1

λ
≤u≤A

Jλ(u).

Suppose there is some point x0 ∈ V satisfying uλ(x0) = uλ1(x0) + log λ1
λ
. Let ε > 0 be so

small that for t ∈ (0, ε), there holds

uλ1(x) + log
λ1

λ
≤ uλ(x) + tδx0(x) ≤ A for all x ∈ V .

Similarly as we did in the proof of Lemma 10, we have by Lemma 11,

0 ≤ d

dt

∣
∣
∣
∣
t=0

Jλ(uλ + tδx0)

= −�uλ(x0) + λeuλ(x0)(euλ(x0) − 1) + f (x0)

= −�
(
uλ − uλ1

)
(x0) + Lλ

(

uλ1 + log
λ1

λ

)

(x0)

< −�
(
uλ − uλ1

)
(x0).

This contradicts the fact that x0 is a minimum point of uλ − uλ1 − log λ1
λ
. Hence

uλ(x) > uλ1(x) + log
λ1

λ
, ∀x ∈ V .

In the same way we obtain u(x) < A for all x ∈ V . Therefore uλ is a local minimum critical
point of Jλ.
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Assume λ < λ2 < 0. The constant A > 1 is chosen sufficiently large such that ϕ − A <

uλ2 + log λ2
λ
on V , and ϕ − A satisfies (41). Clearly there exists some uλ such that

Jλ(uλ) = min
ϕ−A≤u≤uλ2+log λ2

λ

Jλ(u).

If there is some point x1 ∈ V satisfying uλ(x1) = uλ2(x1) + log λ2
λ
, then there is a small

ε > 0 such that for t ∈ (0, ε), there holds

ϕ(x) − A ≤ uλ(x) − tδx1(x) ≤ uλ2(x) + log
λ2

λ
for all x ∈ V .

Thus we have by Lemma 11,

0 ≤ d

dt

∣
∣
∣
∣
t=0

Jλ(uλ − tδx1)

= �uλ(x1) − λeuλ(x1)(euλ(x1) − 1) − f (x0)

= �
(
uλ − uλ2

)
(x0) − Lλ

(

uλ2 + log
λ2

λ

)

(x0)

< �
(
uλ − uλ2

)
(x0).

This contradicts the fact that x1 is a maximum point of uλ − uλ2 − log λ2
λ
. Hence

uλ(x) < uλ2(x) + log
λ2

λ
, ∀x ∈ V .

In the same way we obtain u(x) > ϕ(x)− A for all x ∈ V . Therefore uλ is a local minimum
critical point of Jλ. Thus we complete the proof of the lemma. ��

We conclude from Lemmas 10 and 12 that the following two critical numbers are well
defined.

�∗ = inf
{
λ > 0 : λ f > 0, Jλ has a local minimum critical point

}
(42)

�∗ = sup
{
λ < 0 : λ f > 0, Jλ has a local minimum critical point

}
. (43)

Lemma 13 If f > 0, then �∗ ≥ 4 f ; If f < 0, then �∗ ≤ 4 f .

Proof Suppose λ �= 0 and u is a solution of �u = λeu(eu − 1) + f . Integration by parts
gives

−
∫
V f dμ

λ
=

∫

V
eu(eu − 1)dμ ≥ −|V |

4
,

since eu(eu − 1) ≥ − 1
4 . The conclusion follows from (42) and (43) immediately. ��

We are now ready to complete the proof of the remaining part of the theorem.
Proof of Theorem 3 (b).
We first consider the solvability of the Eq. (3) under the assumption λ ∈ (0,�∗]∪[�∗, 0).
If λ ∈ (0,�∗) ∪ (�∗, 0), then (3) has no solution. Indeed, suppose there exists a number

λ1 ∈ (0,�∗) ∪ (�∗, 0) such that (3) has a solution at λ = λ1. With no loss of generality,
we assume λ1 ∈ (�∗, 0), then by Lemma 12, (3) has a local minimum solution at any
λ ∈ [�∗, λ1). This contradicts the definition of �∗. Hence (3) has no solution for any
λ ∈ (0,�∗) ∪ (�∗, 0).
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Note that for any j ∈ N, there exists a solution u j of (3) with λ = �∗ − 1/ j . According
to Theorem 1, (u j ) is uniformly bounded in V . Thus up to a subsequence, (u j ) uniformly
converges to some function u∗, a solution of (3) with λ = �∗. In the same way, (3) has also
a solution at λ = �∗.

We next consider multiple solutions of (3) under the assumption λ ∈ (�∗,+∞) ∪
(−∞,�∗).

If λ ∈ (�∗,+∞) ∪ (−∞,�∗), by (42) and (43), we let uλ be a local minimum critical
point of Jλ. With no loss of generality, we may assume uλ is the unique critical point of Jλ.
For otherwise, Jλ has already at least two critical points, and the proof terminates. According
to ( [4], Chapter 1, page 32), the q-th critical group of Jλ at uλ is defined by

Cq(Jλ, uλ) = Hq(J
c
λ ∩U , {J cλ \ {uλ}} ∩U ,G), (44)

where Jλ(uλ) = c, J cλ = {u ∈ X : Jλ(u) ≤ c}, U is a neighborhood of uλ ∈ X , Hq is the
singular homology group with the coefficients groups G, say Z, R. By the excision property
of Hq , this definition is not dependent on the choice of U . It is easy to calculate

Cq(Jλ, uλ) = δq0G. (45)

Note that Jλ satisfies the Palais-Smale condition. Indeed, if Jλ(u j ) → c ∈ R and J ′(u j ) → 0
as j → ∞, then using the method of proving Theorem 1, we obtain (u j ) is uniformly
bounded. Since X is pre-compact, then up to a subsequence, (u j ) converges uniformly to
some u∗, a critical point Jλ. Thus the Palais-Smale condition follows. Notice also that

DJλ(u) = −�u + λeu(eu − 1) + f = F(u),

where F is given as in Theorem 2. According to ( [4], Chapter 2, Theorem 3.2), in view of
(45), we have for sufficiently large R > 1,

deg(F, BR, 0) = deg(DJλ, BR, 0) =
∞∑

q=0

(−1)q rank Cq(Jλ, uλ) = 1.

This contradicts deg(F, BR, 0) = 0 derived from Theorem 2. Therefore the Eq. (3) has at
least two different solutions, and the proof of Theorem 3 (b) is finished. ��

5 Chern–Simons Higgs System

In this section, we shall calculate the topological degree of the map related to the Chern–
Simons Higgs system (8), and then use the degree to obtain partial results for multiplicity of
solutions to the system. In particular, Theorems 4, 5 and 6 will be proved. We first derive a
priori estimate for solutions of (9), a deformation of (8).

Proof of Theorem 4 Let σ ∈ [0, 1], λ > 0, η > 0, f > 0, g > 0, and (u, v) be a solution of
the system (9). Note that there exist a unique solution ϕ to the equation

{
�ϕ = f − f
∫
V ϕdμ = 0

and a unique solution ψ to the equation
{

�ψ = g − g
∫
V ψdμ = 0.
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Set w = u − ϕ and z = v − ψ . Then we have
{

�w = λeψez(eϕew − σ) + f

�z = ηeϕew(eψez − σ) + g,
(46)

We claim that

w(x) < −min
V

ϕ for all x ∈ V . (47)

Suppose not. There necessarily hold maxV w ≥ −minV ϕ. Take x0 ∈ V satisfying w(x0) =
maxV w. Since σ ∈ [0, 1], λ > 0, f > 0 and ϕ(x0) + w(x0) ≥ 0, we have

0 ≥ �w(x0) = λeψ(x0)ez(x0)(eϕ(x0)ew(x0) − σ) + f ≥ f > 0,

which is impossible. Hence our claim (47) follows. Keeping in mind η > 0 and g > 0, in
the same way as above, we also have

z(x) < −min
V

ψ for all x ∈ V . (48)

Inserting (47) and (48) into (46), we obtain

‖�w‖L∞(V ) + ‖�z‖L∞(V ) ≤ C

for some constant C , depending only on λ, η, f , g and the graph V . The most important
thing here is that the constant C is not dependent on the parameter σ ∈ [0, 1]. Coming back
to the inequality (18), we immediately conclude

max
V

w − min
V

w ≤ C (49)

and

max
V

z − min
V

z ≤ C .

Observe that integration on both sides of the second equation in (46) leads to
∫

V
eϕew(eψez − σ)dμ = −g

η
|V |.

As a consequence, there holds

0 <
g

η
≤ emaxV wemaxV ϕ

(
emaxV ψ + 1

) ≤ CemaxV w.

Hence maxV w ≥ −C , and in view of (49),

min
V

w ≥ −C . (50)

In the same way, from (49) and the first equation of (46), we derive

min
V

z ≥ −C . (51)

In view of (47), (48), (50) and (51), the proof of the theorem is completed. ��
Now we calculate the topological degree of the map defined as in (10).
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Proof of Theorem 5 Let X = L∞(V ). Define a map F : X × X × [0, 1] → X × X by

F (u, v, σ ) = (−�u + λev(eu − σ) + f , −�v + ηeu(ev − σ) + g), ∀(u, v, σ ) ∈ X × X × [0, 1].
Obviously F ∈ C2(X × X × [0, 1], X × X). On one hand, by Theorem 4, there exists some
R0 > 0 such that for any R ≥ R0, we have

0 /∈ F (∂BR, σ ), ∀σ ∈ [0, 1],
and thus the homotopic invariance of the topological degree implies

deg(F (·, 1), BR, (0, 0)) = deg(F (·, 0), BR, (0, 0)). (52)

Here we denote BR = {(u, v) ∈ X × X : ‖u‖L∞(V ) +‖v‖L∞(V ) < R} and ∂BR = {(u, v) ∈
X × X : ‖u‖L∞(V ) + ‖v‖L∞(V ) = R}, as usual.

On the other hand, we calculate deg(F (·, 0), BR, (0, 0)). Since λ > 0 and f > 0, inte-
grating both sides of the first equation of the system

{
�u = λeu+v + f

�v = ηeu+v + g,
(53)

we get a contradiction, provided that (53) is solvable. This implies

{(u, v) ∈ X × X : F (u, v, 0) = (0, 0)} = ∅.

As a consequence, there holds

deg(F (·, 0), BR, (0, 0)) = 0. (54)

Combining (52) and (54), we get the desired result. ��
LetJλ : X × X → R be a functional defined as in (11). Note that the critical point ofJλ

is a solution of the Chern–Simons system (8). The following property ofJλ will be not only
useful for our subsequent analysis, but also of its own interest.

Lemma 14 Under the assumptions λ > 0, f > 0 and g > 0, Jλ satisfies the Palais-Smale
condition at any level c ∈ R.

Proof Let c ∈ R and {(uk, vk)} be a sequence in X × X such that Jλ(uk, vk) → c and

J ′
λ(uk, vk) → (0, 0) in (X × X)∗ ∼= R

� × R
�.

This together with (12) gives
{−�uk + λevk (euk − 1) + f = ok(1)

−�vk + λeuk (evk − 1) + g = ok(1),
(55)

where ok(1) → 0 uniformly on V as k → ∞. Comparing (55) with the system (8), we have
by using the same method as in the proof of Theorem 4,

‖uk‖L∞(V ) + ‖vk‖L∞(V ) ≤ C

for some constant C , provided that k ≥ k1 for some large positive integer k1. Since V is
finite, X is pre-compact. Hence, up to a subsequence, uk → u∗ and vk → v∗ uniformly in V
for some functions u∗ and v∗. Obviously J ′

λ(u
∗, v∗) = (0, 0). Thus Jλ satisfies the (PS)c

condition. ��
Finally we prove a partial multiple solutions result for the system (8).
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Proof of Theorem 6 We distinguish two hypotheses to proceed.
Case 1. Jλ has a non-degenerate critical point (uλ, vλ).
Since (uλ, vλ) is non-degenerate, we have

det D2Jλ(uλ, vλ) �= 0.

Suppose (uλ, vλ) is the unique critical point of Jλ. Then we conclude for all R >

‖uλ‖L∞(V ) + ‖vλ‖L∞(V ),

deg(DJλ, BR, (0, 0)) = sgn det D2Jλ(uλ, vλ) �= 0. (56)

Here and in the sequel, as in the proof of Theorem 5, BR is a ball centered at (0, 0) with
radius R. Notice that DJλ(u, v) = F (u, v) for all (u, v) ∈ X × X , where F is defined as
in (10). By Theorem 5, we have

deg(DJλ, BR, (0, 0)) = deg(F , BR, (0, 0)) = 0,

contradicting (56). Hence Jλ must have at least two critical points.
Case 2. Jλ has a local minimum critical point (ϕλ, ψλ).
Similar to (44), the q-th critical group of Jλ at the critical point (ϕλ, ψλ) reads as

Cq(Jλ, (ϕλ, ψλ)) = Hq(Jc
λ ∩ U , {Jc

λ \ {(ϕλ, ψλ)}} ∩ U ,G),

where Jλ(ϕλ, ψλ) = c, Jc
λ = {(u, v) ∈ X × X : Jλ(u, v) ≤ c}, U is a neighborhood of

(ϕλ, ψλ) ∈ X × X , G = Z or R is the coefficient group of Hq . With no loss of generality,
we assume (ϕλ, ψλ) is the unique critical point of Jλ. Since (ϕλ, ψλ) is a local minimum
critical point, we easily get

Cq(Jλ, (ϕλ, ψλ)) = δq0G.

By Lemma 14, Jλ satisfies the Palais-Smale condition. Then applying ( [4], Chapter 2,
Theorem 3.2) and Theorem 5, we obtain

0 = deg (F , BR, (0, 0)) = deg(DJλ, BR, (0, 0))

=
∞∑

q=0

(−1)q rank Cq (Jλ, (ϕλ, ψλ))

= 1,

provided that R > ‖ϕλ‖L∞(V ) + ‖ψλ‖L∞(V ). This is impossible, and thus Jλ must have
another critical point, as we desired. ��
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