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Abstract Let (Σ, g) be a compact Riemann surface with smooth boundary ∂Σ, Δg be the Laplace-

Beltrami operator, and h be a positive smooth function. Using a min-max scheme introduced by Djadli and

Malchiodi (2008) and Djadli (2008), we prove that if Σ is non-contractible, then for any ρ ∈ (8kπ, 8(k + 1)π)

with k ∈ N
∗, the mean field equation

⎧⎪⎨
⎪⎩

Δgu = ρ
heu∫

Σ heudvg
in Σ,

u = 0 on ∂Σ

has a solution. This generalizes earlier existence results of Ding et al. (Ann Inst H Poincaré Anal Non Linéaire,

1999) and Chen and Lin (2003) in the Euclidean domain. Also we consider the corresponding Neumann boundary

value problem. If h is a positive smooth function, then for any ρ ∈ (4kπ, 4(k+1)π) with k ∈ N
∗, the mean field

equation ⎧⎪⎨
⎪⎩

Δgu = ρ

(
heu∫

Σ heudvg
− 1

|Σ|
)

in Σ,

∂u/∂v = 0 on ∂Σ

has a solution, where v denotes the unit normal outward vector on ∂Σ. Note that in this case we do not require

the surface to be non-contractible.
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1 Introduction

As a basic problem of mathematical physics, the mean field equation has attracted the interest of many

mathematicians for at least half a century. In addition to the prescribed Gaussian curvature problem

[4,7,8,10,22], it also arises in Onsager’s vortex model for turbulent Euler flows [27, p. 256] and in Chern-

Simons-Higgs models [6, 14, 16,29, 33,35].
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Let Ω be a smooth bounded domain in R
2. It was proved by Ding et al. [15] that if the complement

of Ω contains a bounded region, and h : Ω → R is a positive function, then the mean field equation⎧⎪⎨⎪⎩
−ΔR2u = ρ

heu∫
Ω
heudx

in Ω,

u = 0 on ∂Ω

(1.1)

has a solution for all ρ ∈ (8π, 16π), where ΔR2 = ∂2/∂x2
1 + ∂2/∂x2

2 is the standard Laplacian operator

in R
2. The proof is based on a compactness result of Li and Shafrir [24], the monotonicity technique used

by Struwe [28] in dealing with harmonic maps, and a general min-max theorem [34, Theorem 2.8].

It was pointed out by Li [23] that the Leray-Schauder degree for the mean field equation should depend

only on the topology of the domain and k ∈ N satisfying ρ ∈ (8kπ, 8(k + 1)π). To illustrate this point,

he calculated the simplest case ρ < 8π. Later, by computing the topological degree, Chen and Lin [9]

improved Ding-Jost-Li-Wang’s result to the following: if Ω is not simply connected, and h is positive on Ω,

then (1.1) has a solution for all ρ ∈ (8kπ, 8(k + 1)π). Also they were able to compute the topological

degree for the mean field equation on the compact Riemann surface (Σ, g) without boundary, namely,

Δgu = ρ

(
heu∫

Σ
heudvg

− 1

|Σ|
)

in Σ, (1.2)

where Δg denotes the Laplace-Beltrami operator, and |Σ| stands for the area of Σ with respect to the

metric g. Precisely, the degree-counting formula for (1.2) is given by
(
k−χ(Σ)

k

)
for ρ ∈ (8kπ, 8(k + 1)π).

As a consequence, if the Euler characteristic χ(Σ) � 0, then (1.2) has a solution.

Note that solutions of (1.2) are critical points of the functional

Jρ(u) =
1

2

∫
Σ

|∇gu|2dvg − ρ log

∫
Σ

heudvg +
ρ

|Σ|
∫
Σ

udvg, u ∈ W 1,2(Σ).

A direct method of variation leads to that Jρ has critical points for ρ < 8π. When ρ = 8π, Ding et al. [13]

found a critical point of J8π under certain conditions on Σ and h. For the cases where ρ = 8π, h � 0

or h changes the sign, we refer the readers to [31, 32,39].

In a celebrated paper, Djadli [17] was able to find a solution of (1.2) for all ρ ∈ (8kπ, 8(k+1)π) (k ∈ N
∗)

and arbitrary genera of Σ, by adapting a min-max scheme introduced by Djadli and Malchiodi [18]. In

particular, Chen-Lin’s existence result for (1.2) was improved by Djadli [17] to arbitrary possible χ(Σ).

Let us summarize the procedure in [17]. Denote the family of formal sums by

Σk =

{ k∑
i=1

tiδxi : ti � 0,
k∑

i=1

ti = 1, xi ∈ Σ

}
,

endowed with the weak topology of distributions, say the topology of (C1(Σ))∗. This is known in the

literature as the formal set of barycenters of Σ. The first and most important step is to construct two

continuous maps Ψ and Φλ between Σk and sub-levels of Jρ, say,

Σk
Φλ→ J−(ρ−8kπ) lnλ

ρ
Ψ→ Σk

for λ � λL = eL/(ρ−8kπ) and large L > 0; moreover limλ→+∞ Ψ ◦ Φλ = Id, and in particular, Ψ ◦ Φλ

is homotopic to the identity on Σk provided λ � λL. Here, Ja
ρ stands for a set of all the functions

u ∈ W 1,2(Σ) with Jρ(u) � a for any real number a. The second step is to set the suitable min-max value

for Jρ, namely,

αλ,ρ = inf
γ∈Γλ

sup
(σ,t)∈Σ̂k

Jρ(γ(σ, t)),

where Σ̂k = Σk × [0, 1]/(Σk × {0}) is a topological cone, and Γλ is a set of paths

Γλ = {γ ∈ C0(Σ̂k,W
1,2(Σ)) : γ(σ, 1) = Φλ(σ), ∀σ ∈ Σk}.
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The hypothesis ρ ∈ (8kπ, 8(k + 1)π) and the fact that Σk is non-contractible lead to αλ,ρ > −∞ for

sufficiently large λ. The third step is to obtain critical points of Jρ for ρ ∈ Λ, where Λ is a dense subset

of (8kπ, 8(k + 1)π), by using the monotonicity of αλ,ρ/ρ. The final step is to find critical points of Jρ
for any ρ ∈ (8kπ, 8(k + 1)π), by using a compactness result of Li and Shafrir [24] and an improved

Trudinger-Moser inequality due to Chen and Li [11]. Note that the last two steps are essentially done by

Ding et al. [15].

This method was extensively used to deal with the problems of elliptic equations or systems involving

exponential growth nonlinearities. For Toda systems, we refer the readers to [1,3,25,26] and the references

therein. Recently, Sun et al. [30] extended Djadli’s result to the case of a generalized mean field equation.

Marchis et al. [12] employed it to find critical points of a Trudinger-Moser functional.

In this paper, we are concerned with the boundary value problems on the mean field equation. From

now on, we let (Σ, g) be a compact Riemann surface with smooth boundary ∂Σ. Our first aim is to

generalize the results of Ding et al. [15] and Chen and Lin [9]. Precisely, we have the following theorem.

Theorem 1.1. Let (Σ, g) be a compact Riemann surface with smooth boundary ∂Σ, Δg be the Laplace-

Beltrami operator, and h : Σ → R be a positive smooth function. If Σ is not simply connected, then for

any ρ ∈ (8kπ, 8(k + 1)π) with k a positive integer, the Dirichlet problem⎧⎪⎨⎪⎩
Δgu = ρ

heu∫
Σ
heudvg

in Σ,

u = 0 on ∂Σ

(1.3)

has a solution.

The proof of Theorem 1.1 is based on the min-max theorem [34, Theorem 2.8], which was also used

by Ding et al. [15] and Djadli [17], compactness analysis, and an improved Trudinger-Moser inequality.

All of the three parts are quite different from those of [15,17]. On the choice of the metric space, we use

Σ̂ε,k (see (2.44) below) instead of Σ̂k or Σ̂k; on compactness analysis, we use a reflection method different

from that of Chen and Lin [9] to show that the blow-up phenomenon cannot occur on the boundary ∂Σ;

moreover, we need to prove an improved Trudinger-Moser inequality for functions with boundary value

zero, nor is it the original one in [11].

We also consider the Neumann boundary value problem on the mean field equation. In this regard,

our second result is the following theorem.

Theorem 1.2. Let (Σ, g) be a compact Riemann surface with smooth boundary ∂Σ, v be the unit

normal outward vector on ∂Σ, Δg be the Laplace-Beltrami operator, and h : Σ → R be a positive smooth

function. If ρ ∈ (4kπ, 4(k + 1)π) with k a positive integer, then the Neumann boundary value problem⎧⎪⎨⎪⎩Δgu = ρ

(
heu∫

Σ
heudvg

− 1

|Σ|
)

in Σ,

∂u/∂v = 0 on ∂Σ

(1.4)

has a solution.

We remark that in Theorem 1.2, Σ does not need to be non-contractible. For the proof of Theorem 1.2,

we choose a metric space Ŝk (see (3.27) below), which is non-contractible, whether Σ is non-contractible

or not. Concerning the compactness of solutions to (1.4), if it has a sequence of blow-up solutions, then

we show that ρ = 4kπ for k ∈ N
∗. Also we derive an improved Trudinger-Moser inequality for functions

with integral mean zero, which is important in our analysis.

Before ending Section 1, we mention a recent result of Zhang et al. [40]. Using the min-max scheme of

Djadli [17] and Djadli and Malchiodi [18], they obtained the existence of solutions to the equation⎧⎪⎨⎪⎩
Δgu = 0 in Σ,

∂u/∂v = ρ
heu∫

∂Σ
heudsg

on ∂Σ
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for any ρ ∈ (2kπ, 2(k + 1)π), k ∈ N
∗, and any positive smooth function h. This improved an early result

of Guo and Liu [19].

The rest of this paper is organized as follows. Theorems 1.1 and 1.2 are proved by the min-max

method in Sections 2 and 3, respectively. Throughout this paper, the sequence and the subsequence are

not distinguished. We often denote various constants by the same C from line to line, even in the same

line. Sometimes we write Ck, Ck,ε, C(ε), . . . to emphasize the dependence of these constants.

2 The Dirichlet boundary value problem

In this section, Theorem 1.1 is proved. This will be divided into several subsections. In Subsection 2.1,

we analyze the compactness of solutions to the Dirichlet problem (1.3). In Subsection 2.2, we derive

an improved Trudinger-Moser inequality for functions u ∈ W 1,2
0 (Σ). In Subsection 2.3, we construct

two continuous maps between sub-levels J−L
ρ with sufficiently large L and the topological space Σk.

In Subsection 2.4, we construct min-max levels of Jρ, and ensure these min-max levels are finite. In

Subsection 2.5, several uniform estimates on min-max levels of Jρ are obtained. In Subsection 2.6,

adapting the argument of [15, Lemma 3.2], we prove that Jρ has a critical point for ρ in a dense subset

of (8kπ, 8(k + 1)π). In Subsection 2.7, using compactness of solutions to the Dirichlet problem (1.3), we

conclude that Jρ has a critical point for any ρ ∈ (8kπ, 8(k + 1)π).

2.1 Compactness analysis

Let (ρn) be a sequence of numbers tending to ρ, (hn) be a function sequence converging to h in C1(Σ),

and (un) be a sequence of solutions to⎧⎪⎨⎪⎩
Δgun = ρn

hne
un∫

Σ
hneundvg

in Σ,

un = 0 on ∂Σ.

(2.1)

Define vn = un − log
∫
Σ
hne

undvg. Then Δgvn = ρnhne
vn and

∫
Σ
hne

vndvg = 1.

Lemma 2.1. Assume that ρ is a positive number and h is a positive function. Up to a subsequence,

one of the following alternatives holds:

(i) (un) is bounded in L∞(Σ);

(ii) (vn) converges to −∞ uniformly in Σ;

(iii) there exists a finite singular set S = {p1, . . . , pm} ⊂ Σ such that for any 1 � j � m, there is a

sequence of points {pj,n} ⊂ Σ satisfying pj,n → pj, un(pj,n) → +∞, and vn converges to −∞ uniformly

on any compact subset of Σ \ S as n → ∞. Moreover,

ρn

∫
Σ

hne
vndvg → 8mπ.

Proof. Note that Σ = Σ∪ ∂Σ, where Σ is an open set including all the inner points of Σ, and ∂Σ is its

boundary. The compactness analysis on (un) will be divided into two parts.

Part I. Analysis in the interior domain Σ.

According to an observation in [37, Subsection 4.1] (compared with [2, Theorem 4.17]), by the Green

representation formula for functions with boundary value zero, we have

‖un‖W 1,q
0 (Σ) � Cq, ∀ 1 < q < 2. (2.2)

We claim that there exists some constant c0 > 0 such that for all n ∈ N,∫
Σ

hne
undvg � c0. (2.3)
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Suppose the claim is not true. By Jensen’s inequality,

e
1

|Σ|
∫
Σ
undvg � 1

|Σ|
∫
Σ

eundvg → 0.

Thus
∫
Σ
undvg → −∞, which contradicts (2.2), and concludes our claim (2.3).

To proceed, we assume that ρnhne
vndvg converges to some nonnegative measure μ. If μ(x∗) < 4π for

some x∗ ∈ Σ, then there exist two positive constants ε0 and r0 such that∫
Bx∗ (r0)

ρnhne
vndvg � 4π − ε0.

In view of (2.1), by Brezis-Merle’s theorem [5, Theorem 1] and elliptic estimates, we have that (un) is

bounded in L∞(Bx∗(r0/2)). This leads to μ(x∗) = 0. Define a set S = {x ∈ Σ : μ(x) � 4π}.
If S �= ∅, then we shall show that for any compact set A ⊂ Σ \ S, it holds that

vn → −∞ uniformly in x ∈ A. (2.4)

It suffices to prove that ∫
Σ

hne
undvg → +∞. (2.5)

Suppose that (2.5) does not hold. In view of (2.3), there is a constant c1 such that up to a subsequence,

0 < c0 �
∫
Σ

hne
undvg � c1.

Choose x0 ∈ S and 0 < r0 < dist(x0, ∂Σ) satisfying Bx0(r0) ∩ S = {x0}. Note that (un) is locally

uniformly bounded in Σ \ S. There exists a positive constant c2 depending on x0 and r0 such that

|vn(x)| � c2 for all x ∈ ∂Bx0(r0). Let wn be a solution to{
Δgwn = ρnhne

vn in Bx0(r0),

wn = −c2 on ∂Bx0(r0).

Then the maximum principle implies that wn � vn in Bx0(r0). By the Green formula, wn converges to w

weakly in W 1,q(Bx0(r0)) and a.e. in Bx0(r0). Moreover, w is a solution of{
Δgw = μ in Bx0(r0),

w = −c2 on ∂Bx0(r0).

Let Gx0 be a distributional solution of{
ΔgGx0 = 4πδx0 in Bx0(r0),

Gx0 = −c2 on ∂Bx0(r0).

Clearly, Gx0 is represented by

Gx0(x) = −2 log dist(x, x0) +Ax0 + o(1), (2.6)

where Ax0 is a constant, and o(1) → 0 as x → x0. Since{
Δg(w −Gx0) � 0 in Bx0(r0),

w −Gx0 = 0 on ∂Bx0(r0),

it follows from the maximum principle that

w(x) � Gx0(x) for all x ∈ Bx0(r0) \ {x0}. (2.7)
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Combining (2.6), (2.7) and the fact that wn → w a.e. in Bx0(r0), by Fatou’s lemma, we calculate

+∞ =

∫
Bx0 (r0)

eGx0dvg �
∫
Bx0 (r0)

ewdvg � lim inf
n→∞

∫
Bx0 (r0)

ewndvg � lim inf
n→∞

∫
Bx0 (r0)

evndvg � C.

This is impossible and excludes the possibility of (2.5). Hence we conclude (2.4).

We may assume S = {x1, . . . , xm}. Then it holds that μ(xi) = 8π for all 1 � i � m. Without loss

of generality, it suffices to prove μ(x1) = 8π. Choose an isothermal coordinate system φ : U → B1(0)

near x1. In such coordinates, the metric g and the Laplace-Beltrami operator Δg are represented by

g = eψ(y)(dy21 + dy22) and Δg = −e−ψ(y)ΔR2 , respectively, where ψ is a smooth function with ψ(0, 0) = 0,

and ΔR2 = ∂2/∂y21 + ∂2/∂y22 denotes the standard Laplacian on R
2. Set ũ = u ◦ φ−1 for any function

u : U → R. Since (un) is a sequence of solutions to (2.1), ũn = un ◦ φ−1 satisfies

−ΔR2 ũn(y) = eψ(y)ρnh̃n(y)e
ṽn(y), y ∈ B1. (2.8)

Multiplying both sides of (2.8) by y · ∇R2 ũn(y), by integration by parts, we have

r

2

∫
∂Br

|∇R2 ũn|2dσ − r

∫
∂Br

〈∇R2 ũn, ν〉2dσ = r

∫
∂Br

eψρnh̃ne
ṽndσ −

∫
Br

eṽnρn〈∇R2(eψh̃n), y〉dy

− 2

∫
Br

eψρnh̃ne
ṽndy, (2.9)

where Br = {y ∈ R
2 : y21 + y22 < r}, ∂Br = {y ∈ R

2 : y21 + y22 = r}, and ν denotes the unit outward

vector on ∂Br. In view of (2.4), (un) converges to a Green function G(x, ·) weakly in W 1,q
0 (Σ) and in

C2
loc(Σ \ S). Locally, G(x1, ·) satisfies

Δg,zG(x1, z) = μ(x1)δx1(z), ∀ z ∈ φ−1(B1).

Clearly,

G̃(y) = G(x1, φ
−1(y)) = −μ(x1)

2π
log |y|+ η(y)

for some η ∈ C2(B1). Passing to the limit n → ∞ first, and then r → 0 in (2.9), we obtain

μ(x1) = lim
r→0

(
r

2

∫
∂Br

〈∇R2G̃, ν〉2dσ − r

4

∫
∂Br

|∇R2G̃|2dσ
)

=
(μ(x1))

2

8π
.

This immediately leads to μ(x1) = 8π.

Part II. Analysis on the boundary ∂Σ.

Let x∗ ∈ Σ be fixed. Note that ρnhne
vndvg converges to the nonnegative Radon measure μ on Σ. If

μ(x∗) < 2π, there exist a neighborhood V of x∗ and a number γ0 > 0 such that∫
V

ρnhne
vndvg � 2π − γ0. (2.10)

Without loss of generality, we take an isothermal coordinate system (V, φ, {y1, y2}) such that φ(x∗) =

(0, 0), and φ : V → B
+
1 ∪Γ = {(y1, y2) : y2 � 0}, where Γ = {(y1, y2) : |y1| < 1, y2 = 0}. Moreover, in this

coordinate system, the metric g = eψ(y)(dy21+dy22) and the Laplace-Beltrami operator Δg = −e−ψ(y)ΔR2 ,

where ψ : B+
1 ∪Γ → R is a smooth function with ψ(0, 0) = 0. For more details about isothermal coordinates

on the boundary, we refer the readers to [38]. Now the local version of (2.1) is{
−ΔR2(un ◦ φ−1)(y) = eψ(y)ρn(hn ◦ φ−1)(y)e(vn◦φ−1)(y) in B

+
1 ,

un ◦ φ−1(y) = 0 on Γ.
(2.11)

For any function u : V → R, we define a function ũ : B+
1 ∪ Γ → R by

ũ(y1, y2) =

{
u ◦ φ−1(y1, y2), if y2 � 0,

−u ◦ φ−1(y1,−y2), if y2 < 0.
(2.12)
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One can easily check that ũn is a distributional solution of

−ΔR2 ũn(y) = f̃n(y), y ∈ B1, (2.13)

where f̃n is defined as in (2.12) and for y ∈ B
+
1 ∪ Γ,

fn ◦ φ−1(y) = eψ(y)ρn(hn ◦ φ−1)(y)e(vn◦φ−1)(y).

In view of (2.10) and the fact that ψ(0, 0) = 0, there would exist a number r0 ∈ (0, 1) such that∫
Br0

|f̃n(y)|dy � 4π − γ0.

Let wn be a solution of {
−ΔR2wn = f̃n in Br0 ,

wn = 0 on ∂Br0 .

By Brezis-Merle’s theorem [5, Theorem 1], there exists some constant C depending only on γ0 and r0
such that ∫

Br0

exp

(
(4π − γ0/2)|wn|
‖f̃n‖L1(Br0 )

)
dy � C.

Hence, there exists some q0 > 1 such that

‖e|wn|‖Lq0 (Br0 )
� C. (2.14)

Let ηn = ũn − wn. Then ηn satisfies {
−ΔR2ηn = 0 in Br0 ,

ηn = ũn on ∂Br0 .
(2.15)

Noticing (2.2) and (2.14), we have by applying elliptic estimates to (2.15) that

‖ηn‖L∞(Br0/2) � C. (2.16)

Combining (2.3), (2.14) and (2.16), we conclude ‖f̃n‖Lq0 (Br0/2) � C. Applying elliptic estimates to (2.13),

we obtain that ‖ũn‖L∞(Br0/4) � C, which implies ‖un‖L∞(φ−1(B+
r0/4

)) � C. In conclusion, we have that if

μ(x∗) < 2π, then (un) is uniformly bounded near x∗. This also leads to μ(x∗) = 0.

If μ(x∗) � 2π, in the same coordinate system (V, φ, {y1, y2}) as above, f̃n(y)dy converges to a Radon

measure μ̃ with μ̃(0, 0) � 4π. Obviously, there exists some r1 > 0 such that for any x ∈ Br1 \ {(0, 0)},
μ̃(x) = 0. Using the same argument as the proof of (2.4), we conclude that for any compact set A ⊂
Br1 \{(0, 0)}, ṽn converges to −∞ uniformly in A. This leads to f̃n(y)dy converging to the Dirac measure

μ̃(0, 0)δ(0,0)(y). Recalling (2.2), we have that ũn converges to G̃0 weakly in W 1,q(Br1) and a.e. in Br1 ,

where G̃0 satisfies

−ΔR2G̃0(y) = μ̃(0, 0)δ(0,0)(y), y ∈ Br1 .

Clearly, G̃0 is represented by

G̃0(y) = − μ̃(0, 0)

2π
log |y|+A0 +O(|y|) (2.17)

as y → 0, where A0 is a constant. Noting that ṽn converges to −∞ locally uniformly in Br1 \ {(0, 0)}, we
have by applying elliptic estimates to (2.13) that

ũn → G̃0 in C1
loc(Br1 \ {(0, 0)}). (2.18)

By (2.11), ũn(y1, 0) = 0 for all |y1| < 1, which together with (2.18) leads to G̃0(y1, 0) = 0 for all

0 < |y1| < r1. This contradicts (2.17). Therefore,

{x ∈ ∂Σ : μ(x) � 2π} = ∅.
Combining Parts I and II, we conclude the lemma.
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2.2 An improved Trudinger-Moser inequality

In this subsection, we shall derive an improved Trudinger-Moser inequality, which is an analog of that of

Chen and Li [11]. It is known (see, for example, [20]) that

log

∫
Σ

eudvg � 1

16π

∫
Σ

|∇gu|2dvg + C, ∀u ∈ W 1,2
0 (Σ). (2.19)

Lemma 2.2. Let b0 > 0 and γ0 > 0 be two constants, and Ω1, . . . ,Ωk be k domains of Σ satisfying

dist(Ωi,Ωj) � b0 for all 1 � i < j � k. Then for any ε > 0, there exists some constant C depending only

on b0, γ0, k and ε such that

log

∫
Σ

eudvg � 1

16kπ − ε

∫
Σ

|∇gu|2dvg + C (2.20)

for all u ∈ W 1,2
0 (Σ) with ∫

Ωi

eudvg � γ0

∫
Σ

eudvg, i = 1, . . . , k. (2.21)

Proof. We modify an argument of Chen and Li [11]. Take smooth functions φ1, . . . , φk defined on Σ

satisfying

suppφi ∩ suppφj = ∅, ∀ 1 � i < j � k, (2.22)

φi ≡ 1 on Ωi, 0 � φi � 1 on Σ, ∀ 1 � i � k, (2.23)

and for some positive constant b1 depending only on b0 and g,

|∇gφi| � b1, ∀ 1 � i � k. (2.24)

For any u ∈ W 1,2
0 (Σ) satisfying (2.21), we have φiu ∈ W 1,2

0 (Ω) for all 1 � i � k, and thus (2.19) implies∫
Σ

eudvg � 1

γ0

∫
Ωi

eudvg

� 1

γ0

∫
Σ

eφiudvg

� 1

γ0
exp

(
1

16π
‖∇g(φiu)‖2L2(Σ) + C

)
.

Recall an elementary inequality: if a � ai for nonnegative numbers a and ai, i = 1, . . . , k, then a �
(a1 · · · ak)1/k. In view of (2.22)–(2.24), we have∫

Σ

eudvg � 1

γ0

( k∏
i=1

exp

(
1

16π
‖∇g(φiu)‖2L2(Σ) + C

))1/k

=
eC

γ0
exp

(
1

16kπ

k∑
i=1

‖∇g(φiu)‖2L2(Σ)

)

=
eC

γ0
exp

(
1

16kπ

∥∥∥∥∇g

(
u

k∑
i=1

φi

)∥∥∥∥2
L2(Σ)

)
� C exp

(
1

16kπ
(1 + ε1)‖∇gu‖2L2(Σ) + C(ε1)‖u‖2L2(Σ)

)
. (2.25)

Let 0 < λ1 � λ2 � · · · � λ� � λ�+1 � · · · be all the eigenvalues of the Laplace-Beltrami operator with

respect to the Dirichlet boundary condition with λi → +∞ as i → ∞, and {ei}∞i=1 be the corresponding

unit normal eigenfunctions, i.e., Δgei = λiei and
∫
Σ
eiejdvg = δij for i, j = 1, 2, . . . It is known that
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W 1,2
0 (Σ) = E� ⊕ E⊥

� , where E� = span{e1, . . . , e�} and E⊥
� = {e�+1, e�+2, . . .}. Let u ∈ W 1,2

0 (Σ) be as

above. Write u = v + w with v ∈ E� and w ∈ E⊥
� . Thus the Poincaré inequality implies

‖v‖C0(Σ) �
�∑

i=1

‖ei‖C0(Σ)

∫
Σ

|u||ei|dvg � C�‖∇gu‖L2(Σ),

while by the definition of the (�+ 1)-th eigenvalue,∫
Σ

w2dvg � 1

λ�+1

∫
Σ

|∇gw|2dvg.

Having the above two estimates and applying (2.25) to w, we have∫
Σ

eudvg � eC�‖∇gu‖L2(Σ)

∫
Σ

ewdvg

� CeC�‖∇gu‖L2(Σ) exp

(
1

16kπ
(1 + ε1)‖∇gw‖2L2(Σ) +

C(ε1)

λ�+1
‖∇gw‖2L2(Σ)

)
� CeC�‖∇gu‖L2(Σ) exp

(
1

16kπ

(
1 + ε1

C(ε1)

λ�+1

)
‖∇gu‖2L2(Σ)

)
.

This together with Young’s inequality gives

log

∫
Σ

eudvg � 1

16kπ

(
1 + ε1

C(ε1)

λ�+1
+ ε1

)∫
Σ

|∇gu|2dvg + C�,k,ε1 . (2.26)

Let ε > 0 be any given number. Choosing ε1 = ε/(32kπ − 2ε), and then taking a sufficiently large � such

that C(ε1)/λ�+1 � 1 in (2.26), we immediately have

log

∫
Σ

eudvg � 1

16kπ − ε

∫
Σ

|∇gu|2dvg + C,

where C is a constant depending only on b0, γ0, k and ε. This is exactly (2.20).

For any ρ > 0, we define a functional Jρ : W 1,2
0 (Σ) → R by

Jρ(u) =
1

2

∫
Σ

|∇gu|2dvg − ρ log

∫
Σ

heudvg. (2.27)

Clearly Jρ ∈ C2(W 1,2
0 (Σ),R). To find solutions of the mean field equation (1.3), it suffices to find critical

points of Jρ. For any a ∈ R, the sub-level of Jρ is written as Ja
ρ = {u ∈ W 1,2

0 (Σ) : Jρ(u) � a}.
Let Σk be the formal set of barycenters of Σ (of order k), which is

Σk =

{ k∑
i=1

tiδxi : ti � 0, xi ∈ Σ,

k∑
i=1

ti = 1

}
. (2.28)

It is endowed with the weak topology of distributions. In computation, we use on Σk the metric given

by (C1(Σ))∗ inducing the same topology. Similarly, we may define

Σk =

{ k∑
i=1

tiδxi : ti � 0, xi ∈ Σ,
k∑

i=1

ti = 1

}
. (2.29)

2.3 Continuous maps between sub-levels of Jρ and Σk

Let Jρ, Σk and Σk be defined as in (2.27)–(2.29), respectively. In this subsection, we shall construct

continuous maps between sub-levels of Jρ and Σk (or Σk).

Lemma 2.3. For any k � 1, both Σk and Σk are non-contractible.
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Proof. Since Σk is homotopic to Σk, we only need to prove that Σk is non-contractible. Let χ(Σ) be

the Euler characteristic of Σ. By [21, Corollary 1.4(a)],

χ(Σk) = 1− 1

k!
(1− χ(Σ)) · · · (k − χ(Σ)). (2.30)

Denote the genus of Σ by g and the number of the connected components of ∂Σ by m. Notice that Σ is

simply connected if and only if the Euler characteristic of Σ equals 1. By the assumption, it then follows

that

χ(Σ) = 2− 2g−m � 0. (2.31)

Inserting (2.31) into (2.30), we have

χ(Σk) � 0. (2.32)

On the other hand, it holds that

χ(Σk) =
3k−1∑
j=0

(−1)jdimHj(Σk,Z). (2.33)

Suppose that Σk is contractible. Then dimHj(Σk,Z) = 0 for all j � 1, while dimH0(Σk,Z) = 1, since Σk

is connected. Hence (2.33) gives χ(Σk) = 1, contradicting (2.32). Hence Σk is non-contractible.

Lemma 2.4. Let ρ ∈ (8kπ, 8(k+1)π). Then for any sufficiently large L > 0, there exists a continuous

retraction

Ψ : J−L
ρ = {u ∈ W 1,2

0 (Σ) : Jρ(u) � −L} → Σk.

Moreover, if (un) ⊂ W 1,2
0 (Σ) satisfies eun∫

Σ
eundvg

dvg → σ ∈ Σk, then Ψ(un) → σ ∈ Σk.

Proof. By [17, Proposition 4.1], for any ε > 0, there exists an L0 > 0 such that for all u ∈ J−L0
ρ ,

eu∫
Σ
eudvg

dvg ∈ {σ ∈ D(Σ) : d(σ,Σk) < ε},

where D(Σ) denotes the set of all the distributions on Σ. If ε0 > 0 is sufficiently small, then there exists

a continuous retraction

ψk : {σ ∈ D(Σ) : d(σ,Σk) < ε0} → Σk. (2.34)

For sufficiently large L > 0, we set

Ψ(u) = ψk

(
eu∫

Σ
eudvg

dvg

)
, ∀u ∈ J−L

ρ .

As a consequence, we have a continuous map Ψ : J−L
ρ → Σk.

Moreover, if (un) ⊂ W 1,2
0 (Σ) satisfies eun∫

Σ
eundvg

dvg → σ ∈ Σk, then as n → ∞,

Ψ(un) = ψk

(
eun∫

Σ
eundvg

dvg

)
→ ψk(σ) = σ,

as desired.

Let σ =
∑k

i=1 tiδxi ∈ Σk be fixed. Take a smooth increasing function η : R → R satisfying η(t) = t for

t � 1, and η(t) = 2 for t � 2. Set ηr(t) = rη(t/r) for r > 0. For λ > 0 and x ∈ Σ, we define

φ̃λ,σ(x) = log

( k∑
i=1

ti
8λ2

(1 + λ2η2r(dist(x, xi)))2

)
(2.35)

and

φλ,σ(x) = φ̃λ,σ(x)− log
8λ2

(1 + 4λ2r2)2
. (2.36)
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Lemma 2.5. Let ρ ∈ (8kπ, 8(k + 1)π) and ε > 0. If λ > 0 is chosen sufficiently large, and r > 0 is

chosen sufficiently small, then for any σ ∈ Σk with dist(suppσ, ∂Σ) � ε, it holds that

Jρ(φλ,σ) � (8kπ − ρ) log λ (2.37)

and

eφλ,σ∫
Σ
eφλ,σdvg

dvg → σ as λ → +∞. (2.38)

Proof. Given σ ∈ Σk, without loss of generality, we assume suppσ = {x1, . . . , xk} ⊂ Σ. Let φ̃λ,σ and

φλ,σ be defined as in (2.35) and (2.36), respectively, where λ > 0 and 0 < r < ε/4. Write ri = ri(x) =

dist(x, xi) for x ∈ Σ. A simple observation gives

φ̃λ,σ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

8λ2

(1 + 4λ2r2)2
for x ∈ Σ \

k⋃
i=1

B2r(xi),

log

(
8λ2ti

(1 + λ2η2r(ri))
2
+

8λ2(1− ti)

(1 + 4λ2r2)2

)
for x ∈ B2r(xi).

(2.39)

As a consequence, φλ,σ ∈ W 1,2
0 (Σ). For x ∈ B2r(xi), a straightforward calculation shows

∇gφ̃λ,σ(x) =

8λ2ti
(1+λ2η2

r(ri))
2

8λ2ti
(1+λ2η2

r(ri))
2 + 8λ2(1−ti)

(1+4λ2r2)2

4λ2ηr(ri)η
′
r(ri)∇gri

1 + λ2η2r(ri)
,

and thus

|∇gφ̃λ,σ(x)| � 4λ2ηr(ri)η
′
r(ri)

1 + λ2η2r(ri)
.

In view of (2.39), it holds that ∇gφ̃λ,σ(x) = 0 for x ∈ Σ \⋃k
i=1 B2r(xi). Hence,∫

Σ

|∇gφ̃λ,σ|2dvg =

∫
⋃k

i=1 B2r(xi)

|∇gφ̃λ,σ|2dvg

�
k∑

i=1

∫
B2r(xi)

(
4λ2ηr(ri)η

′
r(ri)

1 + λ2η2r(ri)

)2

dvg

=

k∑
i=1

16π(1 +O(r2))

(
log(1 + λ2r2) +

1

1 + λ2r2
− 1

)
+O(1)

� 16kπ(1 +O(r2)) log λ2 + C (2.40)

for some constant C independent of r and λ. Moreover, for any s with

0 < s < min
{
r, min

1�i<j�k
dist(xi, xj)

}
,

it holds that ∫
⋃k

i=1 B2r(xi)

eφ̃λ,σdvg =

∫
⋃k

i=1 Bs(xi)

eφ̃λ,σdvg +O

(
1

λ2s2

)

=

k∑
i=1

∫
Bs(xi)

8λ2ti
(1 + λ2r2i )

2
dvg +O

(
1

λ2s2

)
= 8π(1 +O(s2)) +O

(
1

λ2s2

)
and ∫

Σ\⋃k
i=1 B2r(xi)

eφ̃λ,σdvg = O

(
1

λ2r4

)
.
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It follows that ∫
Σ

eφ̃λ,σdvg = 8π(1 +O(s2)) +O

(
1

λ2s2

)
+O

(
1

λ2r4

)
. (2.41)

Passing to the limit λ → +∞ first, and then s → 0+, we have

lim
λ→+∞

∫
Σ

eφ̃λ,σdvg = 8π. (2.42)

Hence, ∫
Σ

eφλ,σdvg =

∫
Σ

eφ̃λ,σdvg
(1 + 4λ2r2)2

8λ2
= (8π + oλ(1))λ

2r4. (2.43)

Combining (2.40) and (2.43), we obtain

Jρ(φλ,σ) =
1

2

∫
Σ

|∇gφλ,σ|2dvg − ρ log

∫
Σ

heφλ,σdvg

� (16kπ − 2ρ+O(r2)) log λ+ Cr.

Since ρ > 8kπ, choosing r > 0 sufficiently small and λ > 0 sufficiently large, we conclude (2.37).

Finally, we prove (2.38). Let σ =
∑k

i=1 tiδxi ∈ Σk be as above. For any ϕ ∈ C1(Σ), similar to (2.41),

we calculate ∫
Σ

ϕeφ̃λ,σdvg = 8π
k∑

i=1

tiϕ(xi) +O(s2) +O

(
1

λ2s2

)
+O

(
1

λ2r4

)
.

Letting λ → +∞ first, and then s → 0+, we obtain

lim
λ→+∞

∫
Σ

ϕeφ̃λ,σdvg = 8π
k∑

i=1

tiϕ(xi).

This together with (2.42) implies (2.38).

Lemma 2.6. Let Ψ and L > 0 be as in Lemma 2.4. If λ > 0 is chosen sufficiently large, then there

exists a continuous map Φλ : Σk → J−L
ρ such that Ψ◦Φλ is homotopic to the identity map Id : Σk → Σk.

Proof. Let φλ,σ be constructed as in Lemma 2.5. For any σ ∈ Σk, we define Φλ(σ) = φλ,σ. Clearly,

the map Φλ : Σk → W 1,2
0 (Σ) is continuous. By (2.37), if λ � eL/(ρ−8kπ), then Jρ(φλ,σ) � −L. Thus

Φλ(σ) ∈ J−L
ρ . By Lemma 2.4 and (2.38), it holds that

Ψ ◦ Φλ(σ) = Ψ(φλ,σ) = ψk

(
eφλ,σ∫

Σ
eφλ,σdvg

dvg

)
→ σ

as λ → +∞. Hence, Ψ ◦ Φλ is homotopic to Id : Σk → Σk.

2.4 Min-max values

In this subsection, we shall construct the suitable min-max value of Jρ for ρ ∈ (8kπ, 8(k + 1)π), k ∈ N
∗.

Recalling that Σ is non-contractible, we can take a sufficiently small ε > 0 such that

Σε = {x ∈ Σ : dist(x, ∂Σ) � ε}

is non-contractible. Let

Σε,k = {σ ∈ Σk : dist(suppσ, ∂Σ) � ε}.
According to Lemma 2.3, we see that Σε,k is also non-contractible. Let

Σ̂ε,k = Σε,k × [0, 1]/(Σε,k × {0}) (2.44)
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be the topological cone over Σε,k. A path set associated with the metric space Σ̂ε,k is defined by

Γλ = {γ ∈ C0(Σ̂ε,k,W
1,2
0 (Σ)) : γ |Σε,k×{1} ∈ Γλ,0}, (2.45)

where Γλ,0 is given by

Γλ,0 = {γ ∈ C0(Σε,k × {1},W 1,2
0 (Σ)) : γ(σ, 1) = Φλ(σ), ∀σ ∈ Σε,k}.

If we write a path γ : Σ̂ε,k → W 1,2
0 (Σ) by γ(σ, t) = tφλ,σ, then γ ∈ Γλ, and thus Γλ �= ∅.

For any real numbers λ and ρ, we set

αλ,ρ = inf
γ∈Γλ

sup
(σ,t)∈Σ̂ε,k

Jρ(γ(σ, t)) (2.46)

and

βλ,ρ = sup
γ∈Γλ,0

sup
(σ,t)∈Σε,k×{1}

Jρ(γ(σ, t)). (2.47)

Lemma 2.7. Let ρ ∈ (8kπ, 8(k + 1)π), and ε > 0 be as above. If λ is chosen sufficiently large, and r

is chosen sufficiently small, then −∞ < βλ,ρ < αλ,ρ < +∞.

Proof. If L > 0 is large enough, Ψ : J−L
ρ → Σk is well defined (see Lemma 2.4 above). It follows

from Lemmas 2.5 and 2.6 that for sufficiently large λ > 0 and sufficiently small r > 0, it holds that

Φλ(σ) ∈ J−4L
ρ for all σ ∈ Σε,k. This together with (2.47) implies

βλ,ρ � −4L. (2.48)

Now we claim αλ,ρ > −2L. If not, αλ,ρ � −2L. By the definition of αλ,ρ, namely (2.46), there exists

some γ1 ∈ Γλ such that sup(σ,t)∈Σ̂ε,k
Jρ(γ1(σ, t)) � −3L/2. As a consequence,

Jρ(γ1(σ, t)) � −3

2
L for all (σ, t) ∈ Σ̂ε,k.

Since Ψ : J−L
ρ → Σk is continuous, the map Ψ ◦ γ1 : Σ̂ε,k → Σk is also continuous. Note that γ1(σ, 1)

= Φλ(σ) and γ1(σ, 0) ≡ u0 ∈ J−L
ρ for all σ ∈ Σε,k. If we let π : Σk → Σε,k be a continuous projection,

then π ◦ Ψ ◦ Φλ : Σε,k → Σε,k is homotopic to a constant map π ◦ Ψ ◦ γ1(·, 0) : Σε,k → Σε,k. Moreover,

by Lemma 2.6, π ◦ Ψ ◦ Φλ is homotopic to Id : Σε,k → Σε,k. Hence the identity map Id : Σε,k → Σε,k

is homotopic to the constant map π ◦ Ψ ◦ γ1(·, 0) : Σε,k → Σε,k, which contradicts the fact that Σε,k is

non-contractible. Therefore,

αλ,ρ > −2L. (2.49)

Since Jρ ∈ C2(W 1,2
0 (Σ),R) and Σ̂ε,k is a compact metric space, we immediately have that βλ,ρ > −∞

and αλ,ρ < +∞. This together with (2.48) and (2.49) concludes the lemma.

To proceed, we need several uniform estimates for functionals Jρ.

2.5 Uniform estimates with respect to ρ

Let [a, b] ⊂ (8kπ, 8(k + 1)π) be any closed interval. Let L > 0 be sufficiently large such that

Ψ : J−L
b → Σk (2.50)

is a continuous map defined as in Lemma 2.4. Let Σε,k be given as in the previous subsection. Choose a

sufficiently large λ > 0 such that for all σ ∈ Σε,k, Φλ(σ) = φλ,σ satisfies

Ja(φλ,σ) � −(a− 8kπ) log λ � −4L, (2.51)

where φλ,σ is defined as in (2.36). It should be remarked that the choice of λ depends not only on L, k

and a, but also on ε. Let Γλ and αλ,ρ be given as in (2.45) and (2.46), respectively.
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Lemma 2.8. Let ρ ∈ [a, b]. Then Ψ : J−L
ρ → Σk is well defined uniformly with respect to ρ. Moreover,

for all ρ ∈ [a, b], it holds that

Jρ(φλ,σ) � −4L, ∀σ ∈ Σε,k.

Proof. Let ρ ∈ [a, b]. If u ∈ J−L
ρ , then Jρ(u) � −L. This implies

log

∫
Σ

heudvg > 0.

It follows that Jb(u) � Jρ(u) � −L and u ∈ J−L
b . As a consequence J−L

ρ ⊂ J−L
b , and thus by (2.50),

Ψ : J−L
ρ → Σk is well defined.

Let σ ∈ Σε,k and φλ,σ satisfy (2.51). As above, we have that by (2.51),

Jρ(φλ,σ) =
1

2

∫
Σ

|∇gφλ,σ|2dvg − ρ

∫
Σ

heφλ,σdvg

� 1

2

∫
Σ

|∇gφλ,σ|2dvg − a

∫
Σ

heφλ,σdvg

= Ja(φλ,σ) � −4L.

This ends the proof of the lemma.

For simplicity, we denote αλ,ρ by αρ. By Lemmas 2.7 and 2.8, αρ is a real number for any ρ ∈ [a, b].

Then we have an analog of [15, Lemma 2.4].

Lemma 2.9. αρ/ρ is decreasing in ρ ∈ [a, b].

Proof. Let a � ρ1 < ρ2 � b. Then for any (σ, t) ∈ Σ̂ε,k and any γ ∈ Γλ, it holds that

Jρ1(γ(σ, t))

ρ1
− Jρ2(γ(σ, t))

ρ2
=

(
1

ρ1
− 1

ρ2

)∫
Σ

|∇gγ(σ, t)|dvg � 0.

It then follows that αρ1/ρ1 � αρ2/ρ2.

By Lemma 2.9, αρ/ρ is differentiable almost everywhere in [a, b] ⊂ (8kπ, 8(k + 1)π). Define

Λa,b =

{
ρ ∈ (a, b) :

αρ

ρ
is differentiable at ρ

}
. (2.52)

Then Λa,b is a dense subset of [a, b].

2.6 Existence for a dense set

In this subsection, we shall prove that Jρ has a critical point for any ρ ∈ Λa,b. The argument we shall

use is adapted from Ding et al. [15]. For readers’ convenience, we provide the details here.

Lemma 2.10. If ρ ∈ Λa,b, then αρ is differentiable at ρ. In particular, if ρ ∈ Λa,b, then we have

αρ̃ = αρ +O(ρ̃− ρ) as ρ̃ → ρ.

Proof. In view of (2.52), it suffices to notice that αρ = ρ(αρ/ρ).

As an analog of [15, Lemma 3.2], we have the following lemma.

Lemma 2.11. If ρ ∈ Λa,b, then αρ is a critical value of Jρ.

Proof. Let (ρn) ⊂ [a, b] be an increasing sequence converging to ρ ∈ Λa,b. By the definition of αρn ,

there must be a path γn ∈ Γλ such that

sup
u∈γn(Σ̂ε,k)

Jρn(u) � αρn + ρ− ρn. (2.53)

Also we use the definition of αρ to find some un ∈ γn(Σ̂ε,k) ⊂ W 1,2
0 (Σ) with

Jρ(un) � αρ − (ρ− ρn). (2.54)
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For the above un, by Lemma 2.10, we have

1

2

∫
Σ

|∇gun|2dvg =

Jρn (un)
ρn

− Jρ(un)
ρ

1
ρn

− 1
ρ

� ρ
αρn − αρ

ρ− ρn
+

(
1

ρn
− 1

ρ

)
αρ + ρn + ρ

� c0 (2.55)

for some constant c0 depending only on ρ, αρ and (αρ/ρ)
′. Moreover, by Lemmas 2.9 and 2.10, and the

estimate (2.53), one finds

Jρ(un) �
ρ

ρn
Jρn(un) �

ρ

ρn
(αρn + ρ− ρn) � αρ + C(ρ− ρn) (2.56)

for some constant C independent of n.

Suppose that αρ is not a critical value of Jρ. Since any bounded Palais-Smale sequence must converge

to a critical point of Jρ (see [15, Lemma 3.1]), there would exist a δ > 0 such that

‖dJρ(u)‖(W 1,2
0 (Σ))∗ � 2δ (2.57)

for all u ∈ Nδ, where

Nδ =

{
u ∈ W 1,2

0 (Σ) :

∫
Σ

|∇gu|2dvg � 2c0, |Jρ(u)− αρ| < δ

}
. (2.58)

It follows from (2.54)–(2.56) that Nδ �= ∅. Let Xρ : Nδ → W 1,2
0 (Σ) be a pseudo-gradient vector field for

Jρ in Nδ, namely, a locally Lipschitz vector field satisfying ‖Xρ‖W 1,2
0 (Σ) � 1 and

dJρ(u)(Xρ(u)) � −δ. (2.59)

Here, we have used (2.57). One can check that as n → ∞, dJρn(u) converges to dJρ(u) in (W 1,2
0 (Σ))∗

uniformly in u with
∫
Σ
|∇gu|2dvg � c∗. Thus, Xρ is also a pseudo-gradient vector field for Jρn in Nδ.

Moreover, it holds that for all u ∈ Nδ and sufficiently large n,

dJρn(u)(Xρ(u)) � −δ/2. (2.60)

Take a Lipschitz continuous cut-off function η such that 0 � η � 1, η ≡ 1 in Nδ/2, and η ≡ 0 outside Nδ.

Let ψ : W 1,2
0 (Σ)× [0,+∞) be the flow generated by ηXρ, which satisfies⎧⎨⎩

∂

∂s
ψ(u, s) = η(ψ(u, s))Xρ(ψ(u, s)),

ψ(u, 0) = u.

This flow has long time existence because it always remains stationary outside Nδ. It follows from (2.59)

that for all u ∈ Nδ/2,

d

ds

∣∣∣∣
s=0

Jρ(ψ(u, s)) = dJρ(u)(Xρ(u)) � −δ. (2.61)

In view of (2.49) and (2.58), one easily sees φλ,σ �∈ Nδ for all σ ∈ Σε,k. Since Jρ(ψ(φλ,σ, s)) is

decreasing in s, it holds that Jρ(ψ(φλ,σ, s)) � −4L for all s ∈ [0,+∞). Hence ψ(γn(σ, 1), s) �∈ Nδ, and

thus ψ(γn(σ, 1), s) ≡ ψ(γn(σ, 1), 0) = φλ,σ for all σ ∈ Σε,k and all s ∈ [0,+∞). As a consequence, if we

write ψs(·) = ψ(·, s), then we have ψs ◦ γn ∈ Γλ. By (2.56) and the monotonicity of Jρ(ψs(u)) in s, we

obtain

αρ � sup
u∈ψs◦γn(Σ̂ε,k)

Jρ(u) � sup
u∈γn(Σ̂ε,k)

Jρ(u) � αρ + C(ρ− ρn). (2.62)
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We now claim that

sup
u∈ψs◦γn(Σ̂ε,k)

Jρ(u) is achieved in Nδ/2. (2.63)

In fact, since Σ̂ε,k is a compact metric space, the continuous function Jρ(ψs◦γn(·, ·)) attains its supremum

at some (σ0, t0) ∈ Σ̂ε,k. As a result, the function us,n = ψs ◦ γn(σ0, t0) achieves supu∈ψs◦γn(Σ̂ε,k)
Jρ(u).

If n is chosen sufficiently large, (2.62) implies that αρ � Jρ(us,n) � αρ + δ/2. By (2.60), Jρn(ψs(u)) is

decreasing in s, which together with (2.53) gives Jρn(us,n) � αρn + ρ− ρn. It then follows that

1

2

∫
Σ

|∇gus,n|2dvg =

(
1

ρn
− 1

ρ

)−1(
Jρn(us,n)

ρn
− Jρ(us,n)

ρ

)
�

(
1

ρn
− 1

ρ

)−1(
αρn + ρ− ρn

ρn
− αρ

ρ

)
� c0,

where c0 is the same constant as in (2.55). Therefore, us,n ∈ Nδ/2, and our claim is confirmed.

Let s̄ > 0 and γn = ψs̄ ◦ γn. Then by (2.61) and (2.63), we have

d

ds

∣∣∣∣
s=s̄

sup
(σ,t)∈Σ̂ε,k

Jρ(ψs ◦ γn(σ, t)) = d

ds

∣∣∣∣
s=s̄

sup
(σ,t)∈Σ̂ε,k

Jρ(ψs−s̄ ◦ γn(σ, t))

=
d

ds

∣∣∣∣
s=0

sup
(σ,t)∈Σ̂ε,k

Jρ(ψs ◦ γn(σ, t))

� sup
u∈Nδ/2

d

ds

∣∣∣∣
s=0

Jρ(ψs(u))

� −δ. (2.64)

Using the Newton-Leibniz formula, we conclude from (2.62) and (2.64) that

sup
u∈ψs◦γn(Σ̂ε,k)

Jρ(u) < αρ,

if s > 0 is sufficiently large. This contradicts the definition of αρ, and ends the proof of the lemma.

2.7 Existence for all ρ ∈ (8kπ,8(k+ 1)π)

In this subsection, we use the previous analysis to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. For any ρ ∈ (8kπ, 8(k + 1)π) and k ∈ N
∗, there are two constants a and b

with 8kπ < a < ρ < b < 8(k + 1)π. By Lemma 2.11, we may take an increasing sequence of numbers

(ρn) ⊂ Λa,b such that ρn → ρ and αρn is achieved by un ∈ W 1,2
0 (Σ). Moreover, un satisfies

Δgun = ρn
heun∫

Σ
heundvg

in Σ. (2.65)

By Lemma 2.9,

αρn � b

a
αa. (2.66)

Denoting vn = un − log
∫
Σ
heundvg, by (2.65), we have⎧⎪⎨⎪⎩

Δgvn = ρnhe
vn ,∫

Σ

hevndvg = 1.
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By Lemma 2.1, (un) is bounded in L∞(Σ). Let Ω1, . . . ,Ωk+1 be disjoint sub-domains of Σ. By Lemma 2.2,

log

∫
Σ

eundvg � 1

16(k + 1)π − ε

∫
Σ

|∇gun|2dvg + Cε

for any ε > 0 and some constant Cε > 0. This together with (2.66) implies that for 0 < ε < 16(k+1)π−2b,

1

2

∫
Σ

|∇gun|2dvg = Jρn(un) + ρn log

∫
Σ

heundvg

� b

16(k + 1)π − ε

∫
Σ

|∇gun|2dvg + C.

It then follows that (un) is bounded in W 1,2
0 (Σ). Without loss of generality, we assume that un converges

to uρ weakly in W 1,2
0 (Σ), strongly in Lp(Σ) for any p > 1, and almost everywhere in Σ. Moreover, eun

converges to euρ strongly in Lp(Σ) for any p > 1. By (2.65), uρ is a distributional solution of (1.3).

Hence, uρ is a critical point of Jρ.

3 The Neumann boundary value problem

In this section, we shall prove Theorem 1.2 by the min-max method. Since part of the proof is analogous

to that of Theorem 1.1, we only give its outline but stress the difference. In Subsection 3.1, we prove

a compactness result for solutions of (1.4). In Subsection 3.2, we derive an improved Trudinger-Moser

inequality for functions u ∈ W 1,2(Σ) with
∫
Σ
udvg = 0. In Subsection 3.3, we construct two continuous

maps between sub-levels of Jρ and the topological space Sk, where Jρ and Sk are defined as in (3.26)

and (3.27), respectively. In Subsection 3.4, we construct min-max levels of Jρ. The remaining part of the

proof of Theorem 1.2 is outlined in Subsection 3.5.

3.1 Compactness analysis

Let (ρn) be a number sequence tending to ρ ∈ R, (hn) be a function sequence converging to h in C1(Σ),

and (un) be a sequence of solutions to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Δgun = ρn

(
hne

un∫
Σ
hneundvg

− 1

|Σ|
)

in Σ,

∂un/∂v = 0 on ∂Σ,∫
Σ

undvg = 0.

(3.1)

Define

vn = un − log

∫
Σ

hne
undvg.

Then Δgvn = ρn(hne
vn − 1/|Σ|) and ∫

Σ
hne

vndvg = 1. Concerning the compactness of (un), we have an

analog of Lemma 2.1.

Lemma 3.1. Assume that ρ is a positive number and h is a positive function. Up to a subsequence,

one of the following alternatives holds:

(i) (un) is bounded in L∞(Σ);

(ii) (vn) converges to −∞ uniformly in Σ;

(iii) there exists a finite singular set S = {p1, . . . , pm} ⊂ Σ such that for any 1 � j � m, there is a

sequence of points {pj,n} ⊂ Σ satisfying pj,n → pj, un(pj,n) → +∞, and vn converges to −∞ uniformly

on any compact subset of Σ \ S as n → ∞. Moreover, if S has � points in Σ and (m− �) points on ∂Σ,

then

ρn

∫
Σ

hne
vndvg → 4(m+ �)π.
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Proof. We modify arguments in the proof of Lemma 2.1, and divide the proof into two parts.

Part I. Analysis in the interior domain Σ.

Let (un) be a sequence of solutions to (3.1). By the Green representation formula (see [38]), we have

‖un‖W 1,q(Σ) � Cq, ∀ 1 < q < 2. (3.2)

Since (hn) converges to h > 0 in C1(Σ), there exists some constant C > 0 such that for all n ∈ N,∫
Σ

evndvg � C. (3.3)

Moreover, Jensen’s inequality implies

lim inf
n→∞

∫
Σ

eundvg � |Σ|.

Without loss of generality, we assume that ρnhne
vndvg converges to some nonnegative measure μ on Σ.

If μ(x∗) < 4π for some x∗ ∈ Σ, then there exist two positive constants ε0 and r0 verifying∫
Bx∗ (r0)

ρnhne
vndvg � 4π − ε0.

In view of (3.1), by a result of Brezis and Merle [5, Theorem 1] and elliptic estimates, we have that (un)

is bounded in L∞(Bx∗(r0/2)). This leads to μ(x∗) = 0. Define a set S = {x ∈ Σ : μ(x) � 4π}. If S �= ∅,
then by almost the same argument as the proof of (2.4), we conclude that for any compact set A ⊂ Σ\S,
it holds that

vn → −∞ uniformly in x ∈ A. (3.4)

Assume S = {x1, . . . , xj} for some positive integer j. We shall show that μ(xi) = 8π for all 1 � i � j.

Without loss of generality, it suffices to prove μ(x1) = 8π. For this purpose, we choose an isothermal

coordinate system φ : U → B1 = {(y1, y2) ∈ R
2 : y21 + y22 < 1} near x1. In such coordinates, the metric g

and the Laplace-Beltrami operator Δg are represented by g = eψ(y)(dy21 + dy22) and Δg = −e−ψ(y)ΔR2 ,

respectively, where ψ is a smooth function with ψ(0, 0) = 0, and ΔR2 = ∂2/∂y21 + ∂2/∂y22 denotes the

standard Laplacian on R
2. Set ũ = u ◦ φ−1 for any function u : U → R. Since (un) satisfies (3.1),

ũn = un ◦ φ−1 satisfies

−ΔR2 ũn(y) = eψ(y)ρn(h̃n(y)e
ṽn(y) − |Σ|−1), y ∈ B1. (3.5)

Multiplying both sides of (3.5) by y · ∇R2 ũn(y), by integration by parts, we have

r

2

∫
∂Br

|∇R2 ũn|2dσ − r

∫
∂Br

〈∇R2 ũn, ν〉2dσ = r

∫
∂Br

eψρnh̃ne
ṽndσ −

∫
Br

eṽnρn〈∇R2(eψh̃n), y〉dy

− 2

∫
Br

eψρnh̃ne
ṽndy +

ρn
|Σ|

∫
Br

eψy · ∇R2 ũndy, (3.6)

where Br = {y ∈ R
2 : y21 + y22 < r}, ∂Br = {y ∈ R

2 : y21 + y22 = r}, and ν denotes the unit outward

vector on ∂Br. In view of (3.4), (un) converges to a Green function G(x1, ·) weakly in W 1,q(Σ) and in

C2
loc(Σ \ S). Locally, G(x1, ·) satisfies

Δg,zG(x1, z) = μ(x1)δx1(z)− ρ|Σ|−1, ∀ z ∈ φ−1(B1).

Clearly,

G̃(y) = G(x1, φ
−1(y)) = −μ(x1)

2π
log |y|+ η(y)

for some η ∈ C2(B1). Passing to the limit n → ∞ first, and then r → 0 in (3.6), we obtain

μ(x1) = lim
r→0

(
r

2

∫
∂Br

〈∇R2G̃, ν〉2dσ − r

4

∫
∂Br

|∇R2G̃|2dσ
)

=
(μ(x1))

2

8π
. (3.7)
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This immediately leads to μ(x1) = 8π. In conclusion, we have

μ(xi) = 8π for all 1 � i � j. (3.8)

Part II. Analysis on the boundary ∂Σ.

Let x∗ ∈ Σ be fixed. Note that ρnhne
vndvg converges to the nonnegative Radon measure μ on Σ as

n → ∞. If μ(x∗) < 2π, there exist a neighborhood V of x∗ and a number γ0 > 0 such that∫
V

ρnhne
vndvg � 2π − γ0. (3.9)

Without loss of generality, we take an isothermal coordinate system (V, φ, {y1, y2}) such that φ(x∗)
= (0, 0), and φ : V → B

+
1 ∪ Γ = {(y1, y2) : y21 + y22 < 1, y2 � 0}, where Γ = {(y1, y2) : |y1| < 1, y2 = 0}.

Moreover, in this coordinate system, the metric g = eψ(y)(dy21 + dy22) and the Laplace-Beltrami operator

Δg = −e−ψ(y)ΔR2 , where ψ : B
+
1 ∪ Γ → R is a smooth function with ψ(0, 0) = 0; moreover, ∂/∂v

= e−ψ(y)/2∂/∂y2. For more details about isothermal coordinates on the boundary, we refer the readers

to [38, Section 2]. Now the local version of (3.1) is⎧⎨⎩−ΔR2(un ◦ φ−1)(y) = eψ(y)ρn((hn ◦ φ−1)(y)e(vn◦φ
−1)(y) − |Σ|−1) in B

+
1 ,

∂

∂y2
(un ◦ φ−1)(y) = 0 on Γ.

(3.10)

For any function u : V → R, we define a function ũ : B1 → R by

ũ(y1, y2) =

{
u ◦ φ−1(y1, y2), if y2 � 0,

u ◦ φ−1(y1,−y2), if y2 < 0.
(3.11)

One can easily derive from (3.10) that ũn is a distributional solution of

−ΔR2 ũn(y) = f̃n(y), y ∈ B1, (3.12)

where f̃n is defined as in (3.11) and for y ∈ B
+
1 ∪ Γ,

fn ◦ φ−1(y) = eψ(y)ρn((hn ◦ φ−1)(y)e(vn◦φ−1)(y) − |Σ|−1).

In view of (3.9) and the fact ψ(0, 0) = 0, there exists a number r0 ∈ (0, 1) such that∫
Br0

|f̃n(y)|dy � 4π − γ0.

Let wn be a solution of {
−ΔR2wn = f̃n in Br0 ,

wn = 0 on ∂Br0 .

By [5, Theorem 1], there exists some constant C depending only on ε0 and r0 such that∫
Br0

exp

(
(4π − γ0/2)|wn|
‖f̃n‖L1(Br0 )

)
dy � C.

Hence, there exists some q0 > 1 such that

‖e|wn|‖Lq0 (Br0 )
� C. (3.13)

Let ηn = ũn − wn. Then ηn satisfies {
−ΔR2ηn = 0 in Br0 ,

ηn = ũn on ∂Br0 .
(3.14)
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Noticing (3.2) and (3.13), we have by applying elliptic estimates to (3.14) that

‖ηn‖L∞(Br0/2) � C. (3.15)

Combining (3.3), (3.13) and (3.15), we conclude ‖f̃n‖Lq0 (Br0/2) � C. Applying elliptic estimates to (3.12),

we obtain ‖ũn‖L∞(Br0/4) � C, which implies ‖un‖L∞(φ−1(B+
r0/4

)) � C. In conclusion, we have that if

μ(x∗) < 2π, then (un) is uniformly bounded near x∗. This also leads to μ(x∗) = 0.

If μ(x∗) � 2π, in the same coordinate system (V, φ, {y1, y2}) as above, f̃n(y)dy converges to a Radon

measure μ̃ with μ̃(0, 0) = 2μ(x∗) � 4π. Obviously, there exists some r1 > 0 such that for any x ∈
Br1 \{(0, 0)}, μ̃(x) = 0. Using the same argument as the proof of (3.4), we conclude that for any compact

set A ⊂ Br1 \ {(0, 0)}, ṽn converges to −∞ uniformly in A. This leads to that f̃n(y)dy converges to the

Dirac measure μ̃(0, 0)δ(0,0)(y). Recalling (3.2), we have that ũn converges to G̃0 weakly in W 1,q(Br1) and

a.e. in Br1 , where G̃0 satisfies

−ΔR2G̃0(y) = μ̃(0, 0)δ(0,0)(y)− ρ|Σ|−1, y ∈ Br1 .

Clearly, G̃0 is represented by

G̃0(y) = − μ̃(0, 0)

2π
log |y|+A0 +O(|y|)

as y → 0, where A0 is a constant. Noting that ṽn converges to −∞ locally uniformly in Br1 \ {(0, 0)}, we
have by applying elliptic estimates to (3.12) that

ũn → G̃0 in C2
loc(Br1 \ {(0, 0)}).

Multiplying both sides of (3.12) by y · ∇R2 ũn(y), completely analogous to (3.6) and (3.7), we obtain

μ̃(0, 0) = 8π, and thus

μ(x∗) = 4π. (3.16)

Note that if μ(xi) > 0 for some xi ∈ Σ, then there must exist xi,n ⊂ Σ satisfying un(xi,n) → +∞.

If not, (un) would be uniformly bounded near x, which leads to μ(x) = 0. The lemma then follows

from (3.8) and (3.16) immediately.

3.2 An improved Trudinger-Moser inequality

For a compact surface with smooth boundary, it was proved by Yang [36] that

sup
u∈W 1,2(Σ),

∫
Σ
|∇gu|2dvg�1,

∫
Σ
udvg=0

∫
Σ

e2πu
2

dvg < ∞. (3.17)

Define u = 1
|Σ|

∫
Σ
udvg. By (3.17) and Young’s inequality, we obtain

log

∫
Σ

eu−udvg � log

∫
Σ

e
2π

(u−u)2

‖∇gu‖22
+ 1

8π ‖∇gu‖2
2
dvg

=
1

8π

∫
Σ

|∇gu|2dvg + log

∫
Σ

e
2π

(u−u)2

‖∇gu‖22 dvg

� 1

8π

∫
Σ

|∇gu|2dvg + C.

Hence,

log

∫
Σ

eudvg � 1

8π

∫
Σ

|∇gu|2dvg + 1

|Σ|
∫
Σ

udvg, ∀u ∈ W 1,2(Σ). (3.18)
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Lemma 3.2. Let b0 and γ0 be two positive constants, and Ω1, . . . ,Ωk be k domains of Σ with

dist(Ωi,Ωj) � b0 for all 1 � i < j � k. Then for any ε > 0, there exists some constant C depending only

on b0, γ0, k and ε such that

log

∫
Σ

eudvg � 1

8kπ − ε

∫
Σ

|∇gu|2dvg + 1

|Σ|
∫
Σ

udvg + C (3.19)

for all u ∈ W 1,2(Σ) with ∫
Ωi

eudvg � γ0

∫
Σ

eudvg, i = 1, . . . , k. (3.20)

Proof. We follow the lines of Chen and Li [11]. Take smooth functions φ1, . . . , φk defined on Σ satisfying

suppφi ∩ suppφj = ∅, ∀ 1 � i < j � k, (3.21)

φi ≡ 1 on Ωi, 0 � φi � 1 on Σ, ∀ 1 � i � k, (3.22)

and for some positive constant b1 depending only on b0 and the metric g,

|∇gφi| � b1, ∀ 1 � i � k. (3.23)

For any u ∈ W 1,2(Σ) satisfying (3.20), we have φiu ∈ W 1,2(Ω) for all 1 � i � k, and thus (3.18) implies∫
Σ

eudvg � 1

γ0

∫
Ωi

eudvg

� 1

γ0

∫
Σ

eφiudvg

� 1

γ0
exp

(
1

8π
‖∇g(φiu)‖2L2(Σ) +

1

|Σ|
∫
Σ

φiudvg + C

)
.

Note that (3.21) gives
k∑

i=1

‖∇g(φiu)‖2L2(Σ) =

∥∥∥∥∇g

(
u

k∑
i=1

φi

)∥∥∥∥2
L2(Σ)

,

and (3.22) implies
k∑

i=1

∫
Σ

φiudvg �
∫
Σ

|u|dvg � 1

|Σ|1/2 ‖u‖L2(Σ).

Combining the above three estimates, (3.23), Young’s inequality and an elementary inequality

a � (a1 · · · ak)1/k, if 0 � a � ai, i = 1, . . . , k,

we obtain ∫
Σ

eudvg � 1

γ0

( k∏
i=1

exp

(
1

8π
‖∇g(φiu)‖2L2(Σ) +

1

|Σ|
∫
Σ

φiudvg + C

))1/k

=
eC

γ0
exp

(
1

8kπ

k∑
i=1

‖∇g(φiu)‖2L2(Σ) +
1

k

1

|Σ|
k∑

i=1

∫
Σ

φiudvg

)

=
eC

γ0
exp

(
1

8kπ

∥∥∥∥∇g

(
u

k∑
i=1

φi

)∥∥∥∥2
L2(Σ)

+
1

k

1

|Σ|
k∑

i=1

∫
Σ

φiudvg

)
� C exp

(
1

8kπ
(1 + ε1)‖∇gu‖2L2(Σ) + C(ε1)‖u‖2L2(Σ)

)
. (3.24)

Let 0 < λ1 � λ2 � · · · � λ� � λ�+1 � · · · be all the eigenvalues of the Laplace-Beltrami operator

with respect to the Neumann boundary condition. Clearly λi → +∞ as i → ∞. Let {ei}∞i=1 be the
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corresponding unit normal eigenfunctions, i.e., Δgei = λiei,
∫
Σ
eidvg = 0 and

∫
Σ
eiejdvg = δij for

i, j = 1, 2, . . . It is known that H := {u ∈ W 1,2(Σ) : u = 0} = E� ⊕ E⊥
� , where E� = span{e1, . . . , e�}

and E⊥
� = span{e�+1, e�+2, . . .}. Let u ∈ W 1,2(Σ) be given as above. We decompose u− u = v + w with

v ∈ E� and w ∈ E⊥
� . Thus, the Poincaré inequality implies

‖v‖C0(Σ) �
�∑

i=1

‖ei‖C0(Σ)

∫
Σ

|u− u||ei|dvg � C�‖∇gu‖L2(Σ),

while by the definition of the (�+ 1)-th eigenvalue λ�+1,∫
Σ

w2dvg � 1

λ�+1

∫
Σ

|∇gw|2dvg.

Having the above two estimates and applying (3.24) to w, we have∫
Σ

eu−udvg � eC�‖∇gu‖L2(Σ)

∫
Σ

ewdvg

� CeC�‖∇gu‖L2(Σ) exp

(
1

8kπ
(1 + ε1)‖∇gw‖2L2(Σ) +

C(ε1)

λ�+1
‖∇gw‖2L2(Σ)

)
� CeC�‖∇gu‖L2(Σ) exp

(
1

8kπ

(
1 + ε1 +

C(ε1)

λ�+1

)
‖∇gu‖2L2(Σ)

)
.

This together with Young’s inequality gives

log

∫
Σ

eu−udvg � 1

8kπ

(
1 + ε1

C(ε1)

λ�+1
+ ε1

)∫
Σ

|∇gu|2dvg + C�,k,ε1 . (3.25)

Let 0 < ε < 8kπ be any given number. Choosing ε1 = ε/(16kπ−2ε), and then taking a sufficiently large �

such that C(ε1)/λ�+1 � 1, by (3.25), we have

log

∫
Σ

eu−udvg � 1

8kπ − ε

∫
Σ

|∇gu|2dvg + C,

where C is a constant depending only on b0, γ0, k and ε. This is exactly (3.19).

Define a functional Jρ : W 1,2(Σ) → R by

Jρ(u) =
1

2

∫
Σ

|∇gu|2dvg − ρ log

∫
Σ

heudvg +
ρ

|Σ|
∫
Σ

udvg. (3.26)

From now on to the end of this section, Jρ is always given as in (3.26).

3.3 Continuous maps between sub-levels of Jρ and Σk

Let Σk be defined as in (2.29), and (∂Σ)k be defined by

(∂Σ)k =

{ k∑
i=1

tiδxi : ti � 0,
k∑

i=1

= 1, xi ∈ ∂Σ

}
.

Lemma 3.3. Let ρ ∈ (4kπ, 4(k+1)π). Then for any sufficiently large L > 0, there exists a continuous

retraction

Ψ : J−L
ρ = {u ∈ W 1,2(Σ) : Jρ(u) � −L} → Σk.

Moreover, if (un) ⊂ W 1,2(Σ) satisfies eun∫
Σ
eundvg

dvg → σ ∈ Σk, then Ψ(un) → σ ∈ Σk.

Proof. Since the proof is almost the same as that of Lemma 2.4, we omit the details here.

For any finite set E, we denote the number of all the distinct points of E by �E. We define

Sk = {σ ∈ Σk : �(suppσ ∩ Σ) + �suppσ � k}. (3.27)
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Let us explain what Sk means. Clearly, S1 = (∂Σ)1 = ∂Σ. For k = 2,

S2 = {δx : x ∈ Σ} ∪ {tδx1 + (1− t)δx2 : 0 � t � 1, x1, x2 ∈ ∂Σ} = (∂Σ)2 ∪ Σ.

For k = 3, we write

S3 = {tδx1 + (1− t)δx2 : 0 � t � 1, x1 ∈ Σ, x2 ∈ ∂Σ}
∪ {t1δx1

+ t2δx2
+ t3δx3

: 0 � ti � 1, xi ∈ ∂Σ, 1 � i � 3, t1 + t2 + t3 = 1}
= (∂Σ)3 ∪ A3,

where A3 = {tδx1 + (1 − t)δx2 : 0 � t � 1, x1 ∈ Σ, x2 ∈ ∂Σ}. We observe that dimA3 < dim(∂Σ)3 = 5,

since (∂Σ)3 \ (∂Σ)2 is a smooth 5-dimensional manifold, and dimA3 � 4.

Lemma 3.4. For any k � 1, Sk is non-contractible.

Proof. Obviously, S1 = ∂Σ is non-contractible. For k � 2, based on the above observation, an

induction argument shows Sk = (∂Σ)k ∪ Ak, where dimAk < dim(∂Σ)k = 2k − 1. Though (∂Σ)k is a

combination of several branches of different dimensions, we still denote the maximum dimension of those

branches by dim(∂Σ)k. Arguing as in [17, Lemma 4.7], we have that (∂Σ)k is non-contractible. (This

was also noticed by Zhang et al. [40].) In fact, we have

H2k−1((∂Σ)k,Z2) �= {0}. (3.28)

Give any (2k− 1)-dimensional closed chain C2k−1 and any (2k− 1)-dimensional boundary chain E2k−1 of

(∂Σ)k. Since (∂Σ)k is a closed sub-topological space in Sk, and dim((∂Σ)k) = dim(Sk) = 2k − 1, one

easily sees that C2k−1 is also a closed chain of Sk and E2k−1 = 0 is also the boundary (2k − 1)-chain of

Sk. Hence,

H2k−1((∂Σ)k,Z2) ⊂ H2k−1(Sk,Z2),

which together with (3.28) implies that Sk is non-contractible.

Take a smooth increasing function η : R → R satisfying η(t) = t for t � 1 and η(t) = 2 for t � 2. Set

ηr(t) = rη(t/r) for r > 0. For λ > 0, x ∈ Σ, and 1 � � < m, we define

φ̃λ,σ(x) = log

( �∑
i=1

ti
2

8λ2

(1 + λ2η2r(dist(x, xi)))2
+

m∑
i=�+1

ti
8λ2

(1 + λ2η2r(dist(x, xi)))2

)
(3.29)

and

φλ,σ(x) = φ̃λ,σ(x)− 1

|Σ|
∫
Σ

φ̃λ,σdvg. (3.30)

Lemma 3.5. Let ρ ∈ (4kπ, 4(k + 1)π). If λ > 0 is chosen sufficiently large, and r > 0 is chosen

sufficiently small, then for any σ ∈ Sk, it holds that

Jρ(φλ,σ) � (4kπ − ρ) log λ (3.31)

and

eφλ,σ∫
Σ
eφλ,σdvg

dvg → σ as λ → +∞. (3.32)

Proof. Both the cases where suppσ∩Σ = ∅ and suppσ∩Σ �= ∅ can be dealt with in the same way. Give

σ ∈ Sk. Without loss of generality, we assume suppσ = {x1, . . . , xm} ⊂ Σ, suppσ ∩ Σ = {x1, . . . , x�}
and m+ � � k. Let φ̃λ,σ and φλ,σ be defined as in (3.29) and (3.30), respectively, where λ > 0 and r > 0.

Write ri = ri(x) = dist(x, xi) for x ∈ Σ. A simple observation gives

φ̃λ,σ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

8λ2

(1 + 4λ2r2)2
for x ∈ Σ \

k⋃
i=1

B2r(xi),

log

(
8λ2ti

(1 + λ2η2r(ri))
2
+

8λ2(1− ti)

(1 + 4λ2r2)2

)
for x ∈ B2r(xi),

(3.33)
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where ti = ti/2 for 1 � i � �, ti = ti for �+ 1 � i � m, and B2r(xi) = {x ∈ Σ : dist(x, xi) < 2r} denotes

a geodesic ball centered at xi with radius 2r. One easily sees φλ,σ ∈ W 1,2(Σ) and
∫
Σ
φλ,σdvg = 0. For

x ∈ B2r(xi) and i = 1, . . . ,m, a straightforward calculation shows

∇gφ̃λ,σ(x) =

8λ2ti
(1+λ2η2

r(ri))
2

8λ2ti
(1+λ2η2

r(ri))
2 + 8λ2(1−ti)

(1+4λ2r2)2

4λ2ηr(ri)η
′
r(ri)∇gri

1 + λ2η2r(ri)
,

and thus,

|∇gφ̃λ,σ(x)| � 4λ2ηr(ri)η
′
r(ri)

1 + λ2η2r(ri)
.

In view of (3.33), it holds that ∇gφ̃λ,σ(x) = 0 for x ∈ Σ \⋃m
i=1 B2r(xi). We calculate that for 1 � i � �,∫

B2r(xi)

(
4λ2ηr(ri)η

′
r(ri)

1 + λ2η2r(ri)

)2

dvg = 16π(1 +O(r2))

(
log(1 + λ2r2) +

1

1 + λ2r2
− 1

)
,

and for �+ 1 � i � m,∫
B2r(xi)

(
4λ2ηr(ri)η

′
r(ri)

1 + λ2η2r(ri)

)2

dvg = 8π(1 +O(r2))

(
log(1 + λ2r2) +

1

1 + λ2r2
− 1

)
.

For a fixed r > 0, since x1, . . . , xm are arbitrary, one sees that {B2r(x1), . . . , B2r(xm)}may have nonempty

intersections, and thus,∫
Σ

|∇gφ̃λ,σ|2dvg =

∫
⋃m

i=1 B2r(xi)

|∇gφ̃λ,σ|2dvg

�
m∑
i=1

∫
B2r(xi)

(
4λ2ηr(ri)η

′
r(ri)

1 + λ2η2r(ri)

)2

dvg

� ((16π�+ 8π(m− �))(1 +O(r2)))

(
log(1 + λ2r2) +

1

1 + λ2r2
− 1

)
+O(1)

� 8kπ(1 +O(r2)) log λ2 + C (3.34)

for some constant C depending only on r. Moreover, for any s and

0 < s < min

{
r,
1

2
min

1�i<j�m
dist(xi, xj)

}
,

it holds that ∫
⋃m

i=1 B2r(xi)

eφ̃λ,σdvg =

∫
⋃m

i=1 Bs(xi)

eφ̃λ,σdvg +O

(
1

λ2s2

)
=

m∑
i=1

∫
Bs(xi)

8λ2ti
(1 + λ2r2i )

2
dvg +O

(
1

λ2s2

)
= 4π(1 +O(s2)) +O

(
1

λ2s2

)
and ∫

Σ\⋃m
i=1 B2r(xi)

eφ̃λ,σdvg = O

(
1

λ2r4

)
.

It follows that ∫
Σ

eφ̃λ,σdvg = 4π(1 +O(s2)) +O

(
1

λ2s2

)
+O

(
1

λ2r4

)
. (3.35)
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Passing to the limit λ → +∞ first, and then s → 0+, we have

lim
λ→+∞

∫
Σ

eφ̃λ,σdvg = 4π. (3.36)

Note that there exists some constant C depending only on r such that

1

|Σ|
∫
Σ

φ̃λ,σdvg � − log λ2 + C. (3.37)

Hence by (3.36) and (3.37), ∫
Σ

eφλ,σdvg � C(1 + oλ(1))λ
2.

This together with (3.34) gives

Jρ(φλ,σ) =
1

2

∫
Σ

|∇gφλ,σ|2dvg − ρ log

∫
Σ

heφλ,σdvg

� (4kπ − ρ+O(r2)) log λ2 + Cr.

Since ρ > 4kπ, choosing r > 0 sufficiently small and λ > 0 sufficiently large, we conclude (3.31).

Finally we prove (3.32). Let σ =
∑m

i=1 tiδxi ∈ Sk be as above. For any ϕ ∈ C1(Σ), similar to (3.35),

we calculate ∫
Σ

ϕeφ̃λ,σdvg = 4π
k∑

i=1

tiϕ(xi) +O(s2) +O

(
1

λ2s2

)
+O

(
1

λ2r4

)
.

Letting λ → +∞ first, and then s → 0+, we obtain

lim
λ→+∞

∫
Σ

ϕeφ̃λ,σdvg = 4π
k∑

i=1

tiϕ(xi).

This together with (3.36) implies (3.32).

Similar to (2.34), for a sufficiently small ε0 > 0, we have a continuous retraction

p : {σ ∈ D(Σ) : d(σ,Sk) < ε0} → Sk.

Lemma 3.6. Let Ψ and L be as in Lemma 3.3. If λ > 0 is chosen sufficiently large, then there exists

a continuous map Φλ : Sk → J−L
ρ such that p ◦ Ψ ◦ Φλ : Sk → Sk is homotopic to the identity map

Id : Sk → Sk.

Proof. Let φλ,σ be constructed as in Lemma 3.5. For any σ ∈ Sk, we define Φλ(σ) = φλ,σ for

large λ > 0. Clearly, the map Φλ : Sk → W 1,2(Σ) is continuous. By (3.31), if λ � eL/(ρ−4kπ), then

Jρ(φλ,σ) � −L. Thus Φλ(σ) ∈ J−L
ρ . By Lemma 3.3 and (3.32), it holds that

p ◦Ψ ◦ Φλ(σ) = p ◦Ψ(φλ,σ)

= p ◦ ψk

(
eφλ,σ∫

Σ
eφλ,σdvg

dvg

)
→ σ

as λ → +∞. Hence, p ◦Ψ ◦ Φλ is homotopic to Id : Sk → Sk.

3.4 Min-max values

Let

H =

{
u ∈ W 1,2(Σ) :

∫
Σ

udvg = 0

}
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and

Ŝk = Sk × [0, 1]/(Sk × {0})
be the topological cone over Sk. A path set associated with the metric space Ŝk is defined by

Γλ = {γ ∈ C0(Ŝk,H) : γ |
Ŝk×{1} ∈ Γλ,0},

where Γλ,0 is given by

Γλ,0 = {γ ∈ C0(Sk × {1},H) : γ(σ, 1) = Φλ(σ), ∀σ ∈ Sk}.

If we write a path γ : Ŝk → H by γ(σ, t) = tφλ,σ, then γ ∈ Γλ, and thus Γλ �= ∅.
For real numbers λ and ρ, we set

αλ,ρ = inf
γ∈Γλ

sup
(σ,t)∈Ŝk

Jρ(γ(σ, t))

and

βλ,ρ = sup
γ∈Γλ,0

sup
(σ,t)∈Sk×{1}

Jρ(γ(σ, t)).

Lemma 3.7. Let ρ ∈ (4kπ, 4(k + 1)π). If λ is chosen sufficiently large, and r is chosen sufficiently

small, then −∞ < βλ,ρ < αλ,ρ < +∞.

Proof. The proof is very similar to that of Lemma 2.7. It suffices to use Lemma 3.6 instead of the

fact that π ◦ Ψ ◦ Φλ : Σε,k → Σε,k is homotopic to Id : Σε,k → Σε,k, and use Lemma 3.4 instead of the

non-contractibility of Σε,k.

3.5 Completion of the proof of Theorem 1.2

Define αρ = αλ,ρ for sufficiently large λ > 0. Similar to Lemma 2.9, αρ/ρ is decreasing in ρ ∈ (4kπ,

4(k + 1)π). Let

Λk =

{
ρ ∈ (4kπ, 4(k + 1)π) :

αρ

ρ
is differentiable at ρ

}
.

In view of an analog of Lemma 2.11, αρ is a critical value of Jρ for any ρ ∈ Λk.

Now we let ρ ∈ (4kπ, 4(k+1)π). Take an increasing sequence of numbers (ρn) ⊂ Λk such that ρn → ρ,

(ρn) ⊂ [a, b] ⊂ (4kπ, 4(k+1)π), and αρn is achieved by un ∈ H. Moreover, un satisfies the Euler-Lagrange

equation

Δgun = ρn

(
heun∫

Σ
heundvg

− 1

|Σ|
)
. (3.38)

Since αρ/ρ is decreasing in ρ ∈ [a, b],

αρn � b

a
αa. (3.39)

Define vn = un − log
∫
Σ
heundvg, and we have⎧⎪⎨⎪⎩

Δgvn = ρn(he
vn − |Σ|−1),∫

Σ

hevndvg = 1.

By Lemma 3.1, (un) is bounded in L∞(Σ). Let Ω1, . . . ,Ωk+1 be disjoint closed sub-domains of Σ. It

follows from Lemma 3.2 that

log

∫
Σ

eundvg � 1

8(k + 1)π − ε

∫
Σ

|∇gun|2dvg + Cε
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for any ε > 0 and some constant Cε > 0. This together with (3.39) implies that for 0 < ε < 8(k+1)π−2b,

1

2

∫
Σ

|∇gun|2dvg = Jρn(un) + ρn log

∫
Σ

heundvg

� b

8(k + 1)π − ε

∫
Σ

|∇gun|2dvg + C.

Then it follows that (un) is bounded in H. Without loss of generality, we assume that un converges to u0

weakly in H, strongly in Lp(Σ) for any p > 1, and almost everywhere in Σ. Moreover, eun converges

to eu0 strongly in Lp(Σ) for any p > 1. By (3.38), u0 satisfies

Δgu0 = ρ

(
heu0∫

Σ
heu0dvg

− 1

|Σ|
)

in the distributional sense. In particular, u0 is a critical point of Jρ.
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