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Abstract As is well known, self-similar solutions to the mean curvature flow,
including self-shrinkers, translating solitons and self-expanders, arise natural-
ly in the singularity analysis of the mean curvature flow. In this paper we
give complete classifications of codimension one complete self-shrinkers with
nonnegative constant scalar curvature. We also give alternative proofs of the
classifications of codimension one translating solitons and self-expanders with
nonnegative constant scalar curvature.
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1 Introduction

1.1 Self-shrinkers

An n-dimensional submanifold X : M → Rn+p in the (n + p)-dimensional
Euclidean space Rn+p is called a self-shrinker if it satisfies

H = −XN , (1.1)

where H and XN denote the mean curvature vector field and the orthogonal
projection of X into the normal bundle of Mn, respectively. It is well known
that self-shrinkers play an important role in the singularity analysis of the
mean curvature flow as they describe all possible Type I blow ups at a given
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singularity of the mean curvature flow (cf. [20,21]). Abresch and Langer [1] gave
a complete classification of closed self-shrinkers of dimension one in R2, which
are now called Abresch–Langer curves. In the hypersurface case, Huisken [20,21]
proved a classification theorem that the only possible smooth self-shrinkers
Mn in Rn+1 with nonnegative mean curvature, bounded second fundamental
form and polynomial volume growth are isometric to Γ × Rn−1 or Sk(

√
k) ×

Rn−k (0 ≤ k ≤ n). Here Γ is an Abresch–Langer curve. In their pioneering
work, Colding and Minicozzi [13] showed that Huisken’s classification theorem
still hold without the assumption of bounded second fundamental form. Since
then, many interesting works on self-shrinkers are done.

Le and Sesum [24] proved that if M is an n-dimensional complete self-
shrinker with polynomial volume growth and S < 1, then M is isometric to the
hyperplane Rn, where S denotes the squared norm of the second fundamental
form. Furthermore, Cao and Li [6] have studied the general case. They proved
that if M is an n-dimensional complete self-shrinker with polynomial volume
growth and S ≤ 1 in the Euclidean space Rn+p, then M is isometric to either
the hyperplane Rn, the round sphere Sn(

√
n) or a cylinder Sm(

√
m)×Rn−m, 1 ≤

m ≤ n − 1. See also Ding and Xin [14], Cheng and Wei [10], H. Xu and Z.
Xu [35], and Lei et al. [25] for the second gap on the squared norm of the second
fundamental form for n-dimensional complete self-shrinkers with polynomial
volume growth in Euclidean space Rn+1. These extrinsic rigidity theorems for
self-shrinkers reveal the similarity of self-shrinkers in a Euclidean space with
minimal submanifolds in the unit sphere.

Bewaring in mind the isoparametric conjecture for closed minimal hyper-
surfaces of constant squared norm of the second fundamental form in the unit
sphere (cf. [16,28] for surveys), it is very natural for Cheng and his collaborators
to study the classification of n-dimensional complete self-shrinkers in Rn+1 with
constant squared norm of the second fundamental form. They gave a complete
classification of such self-shrinkers of dimension 2 in R3 (cf. [9]) and of dimen-
sion 3 in R4 with an additional assumption of constant f4 very recently (cf. [8]).
Note that for minimal submanifolds in a unit sphere, by the Gauss equation,
constant squared norm of the second fundamental form implies constant scalar
curvature and vice versa. But for self-shrinkers this is not true and it is natural
to ask if we can give a complete classification of n-dimensional complete self-
shrinkers in Rn+1 with constant scalar curvature. In this direction, Guo proved
the following result.

Theorem 1.1 [17, Corollary 3.2]. An n-dimensional compact self-shrinker in
Rn+1 with constant scalar curvature is isometric to Sn(

√
n).

Theorem 1.1 is also a corollary of Huisken’s previously mentioned result
that the only possible smooth self-shrinkers Mn in Rn+1 with nonnegative mean
curvature, bound second fundamental form and polynomial volume growth are
isometric to Γ× Rn−1 or Sk(

√
k)× Rn−k (0 ≤ k ≤ n), since if M has constant



Complete Self-similar Hypersurfaces to the Mean Curvature Flow 419

scalar curvature and compact, it has nonnegative mean curvature, bounded
second fundamental form and polynomial volume growth immediately. Note
that Guo [17] actually proved a more general result, that M is a round sphere if
it has certain lower or upper bounded on its scalar curvature and then Theorem
1.1 is an immediate corollary.

This paper aims to classify n-dimensional complete self-shrinkers in Rn+1

with constant scalar curvature. Guo used integral formulas, in particular
Minkowski’s integral formulas to prove his main theorem, which seems not
applicable in the complete noncompact case. In this paper we will use point
wise estimates to give classifications of complete self-shrinkers with constant
scalar curvature. We have

Theorem 1.2. Let X : M → Rn+1 be an n-dimensional complete self-shrinker
in Rn+1. If the scalar curvature of M is constant, positive and M is of polyno-
mial volume growth, it is isometric to one of the following:
(1) a cylinder Sm(

√
m)× Rn−m, 2 ≤ m ≤ n− 1,

(2) the round sphere Sn(
√
n).

Remark 1.1. When M is compact all of assumptions in Theorem 1.2 are
satisfied immediately. Therefore Theorem 1.2 generalizes Corollary 3.2 in [17].
Since our proof of Theorem 1.2 uses point-wise estimates, we also provide an
alternative proof of Corollary 3.2 in [17].

The main step in the proof of Theorem 1.2 is to prove that if an n-dimensional
complete self-shrinker in Rn+1 has constant positive scalar curvature, its squared
norm of the second fundamental form is smaller than or equal to 1. Then the
conclusion follows from Theorem 1.1 of [6]. Cao and Li expected that the as-
sumption of polynomial volume growth can be removed in Theorem 1.1 of [6].
Thus we except that the condition on volume growth in Theorem 1.2 can be
removed. We would like to propose the following conjecture.

Conjecture Let X : M → Rn+1 be an n-dimensional complete self-shrinker
in Rn+1. If the scalar curvature of M is constant and positive, it is isometric
to a cylinder Sm(

√
m)× Rn−m, 2 ≤ m ≤ n− 1 or the round sphere Sn(

√
n).

We will prove that this conjecture is true when M has constant scalar cur-
vature larger than n− 2 in the appendix (see Proposition 4.1).

For n-dimensional complete self-shrinkers with zero scalar curvature we have

Theorem 1.3. Let X : M → Rn+1 be an n-dimensional complete self-shrinker
in Rn+1. If the scalar curvature of M is zero, it is isometric to Γ×Rn−1, where
Γ is a complete self-shrinker in R2.

Remark 1.2. Note that self-shrinkers in R2 have been completely classified
by Halldorsson (see [18, Theorem 5.1]) and the closed case was earlier classified
by Abresch and Langer [1].
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As a corollary of Theorem 1.3, we have

Theorem 1.4. Let X : M → Rn+1 be an n-dimensional complete self-shrinker
in Rn+1. If the scalar curvature of M is zero and M is of polynomial volume
growth, it is isometric to one of the following:
(1) Rn,
(2) S1 × Rn−1,
(3) Γ× Rn−1, where Γ is an Abresch–Langer curve.

1.2 Translators

An n-dimensional submanifold X : M → Rn+p in the (n + p)-dimensional
Euclidean space Rn+p is called a translating soliton (abbreviated by translator)
if it satisfies

H = V N ,

where H and V N denote the mean curvature vector field and the orthogonal
projection of V into the normal bundle of Mn, respectively. Here V is a (nonze-
ro) constant vector in Rn+p.

The translators play an important role in the study of the mean curvature
flow, as they often occur as Type-II singularity of a mean curvature flow (cf.
[3, 4, 22,32,33]).

It is well known that there are no closed translators. Mart́ın, Savas-Halilaj
and Smoczyk [26] gave a complete classification of n-dimensional complete
translators in Rn+1 with zero scalar curvature. In this paper we will show
that there exists no n-dimensional complete translator in Rn+1 with positive
constant scalar curvature and we also give a slight different proof of their the-
orem.

Theorem 1.5 [26]. Let X : M → Rn+1 be an n-dimensional complete trans-
lator in Rn+1. If the scalar curvature R of M is a nonnegative constant, then
we have R = 0 and M is isometric to Γ × Rn−1, where Γ is a straight line or
the Grim Reaper curve in R2, i.e., M is a hyperplane or a grim hyperplane.

1.3 Self-expanders

An n-dimensional submanifold X : M → Rn+p in the (n + p)-dimensional
Euclidean space Rn+p is called a self-expander if it satisfies

H = XN ,

where H and XN denote the mean curvature vector field and the orthogonal
projection of X into the normal bundle of Mn, respectively.

Self-expanders arise naturally when one considers solutions of graphical
mean curvature flow. In the case of codimension 1 and under certain assump-
tions on the initial hypersurface at infinity, Ecker and Huisken [15] showed that
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the solutions of mean curvature flow of entire graphs in Euclidean space exist
for all times t > 0 and become asymptotically self-expanding as t → ∞. As
was pointed out in [15] and [29], self-expanders also arise as solutions of the
mean curvature flow, if the initial submanifold is a cone. Moreover, in some sit-
uations uniqueness of self-expanders is important for the construction of mean
curvature flows starting from certain singular configurations [5]. The interested
reader can consult the recent article [30] by Smoczyk and references therein for
more recent progress and a historical note on self-expanders.

It is well known that self-expanders can not be closed. Ancari and Cheng [2]
gave a complete classification of n-dimensional self-expanders in Rn+1 with non-
negative constant scalar curvature. In this paper we will give a slight different
proof of it.

Theorem 1.6 [2]. Let X : M → Rn+1 be an n-dimensional complete self-
expander in Rn+1. If the scalar curvature R of M is a nonnegative constant,
then R = 0 and M is isometric to Γ×Rn−1, where Γ is a complete self-expander
in R2, i.e. M is a hyperplane or a self-expanding hyperplane.

Remark 1.3. Note that self-expanders in R2 have been completely classified
(cf. [18], [23, Theorem 6.1]).

Remark 1.4. In [30], any self-expander M = Γ × Rn−1 ⊂ Rn+1, where Γ
is a non-trial self-expanding curve in R2 (i.e., not a straight line) is called a
self-expanding hyperplane. Here we used his terminology.

We would like to point out that hypersurfaces with constant scalar curva-
ture in a Euclidean space is a very active and important research subject of
differential geometry. In particular, Hilbert’s theorem states that a complete
surface of constant −1 sectional curvature can not be isometrically immersed
in R3 and Hartman and Nirenberg [19] classified complete surfaces in R3 with
nonnegative constant curvature, i.e., they must be planes, round spheres or
cylinders. Therefore our theorems make sense only when n ≥ 3. There is al-
so a well-known Yau’s conjecture for constant scalar curvature hypersurfaces
in a Euclidean space which states that compact hypersurfaces in Rn+1 with
constant scalar curvature must be isometric to a round sphere, which was
confirmed by Ros [27] under an additional assumption of embeddedness and
by Cheng [7] under an additional assumption of locally conformally flatness.
Cheng and Yau [11] considered the higher dimensional case of the theorem of
Hilbert, Hartman and Nirenberg, where they proved that complete noncompact
hypersurfaces in Rn+1 with constant scalar curvature and nonnegative sectional
curvature are isometric to the generalized cylinders.

Note that we have complete classifications of n-dimensional complete trans-
lators and self-expanders in Rn+1 with nonnegative constant scalar curvature
and of n-dimensional complete self-shrinkers in Rn+1 with zero scalar curvature
or with positive constant scalar curvature and polynomial volume growth. But
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our argument does not work for the case of negative constant scalar curvature
and therefore we would like to propose the following problem.

Problem 1.1. Is there any n-dimensional complete self-similar solution to the
mean curvature flow in Rn+1 with negative constant scalar curvature?

Remark 1.5. For self-expanders this problem was proposed by Ancari and
Cheng in [2].

Organization. In Section 2, we give some preliminary facts on self-similar
solutions to the mean curvature flow. All of the main theorems will be proved in
Section 3. In the appendix we give a partial positive answer to the Conjecture
on page 419.

2 Preliminaries

In this section we give some notations and formulas. Let X : M → Rn+1

be an n-dimensional self-shrinker in Rn+1. Let {e1, . . . , en, en+1} be a local
orthonormal basis along M with dual coframe {ω1, . . . , ωn, ωn+1}, such that
{e1, . . . , en} is a local orthonormal basis of M and en+1 is normal to M . Then
we have

ωn+1 = 0, ωn+1i = −
n∑

j=1

hijωj , hij = hji,

where hij denotes the component of the second fundamental form of M . Denote
by

II =
∑
i,j

hijωi ⊗ ωjen+1

the second fundamental form of M and

~H =

n∑
j=1

hjjen+1, H =

n∑
j=1

hjj

the mean curvature vector field and the mean curvature of M , respectively. The
Gauss equations and Codazzi equations are given by

Rijkl = hikhjl − hilhjk, (2.1)

hijk = hikj , (2.2)

where Rijkl is the component of curvature tensor and the covariant derivative
of hij is defined by

n∑
k=1

hijkωk = dhij +
n∑

k=1

hkjωki +
n∑

k=1

hikωkj .
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Note that from the Gauss equations (2.1) we have

R = H2 − S, (2.3)

where R denotes the scalar curvature of M and S denotes the squared norm of
the second fundamental form of M , i.e.

S =
∑
i,j

h2
ij .

2.1 Self-shrinkers

The following elliptic operator L was introduced by Colding and Minicozzi [13]:

L f = ∆f − 〈X,∇f〉,

where ∆ and ∇ denote the Laplacian and the gradient operator on the self-
shrinker, respectively and 〈·, ·〉 denotes the standard inner product of Rn+1. By
a direct calculation, we have (cf. [13])

L hij = (1− S)hij ,

LH = H(1− S),

L |X|2 = 2(n− |X|2),

where
|X|2 = 〈X,X〉.

Then we have

1

2
L S =

∑
i,j,k

h2
ijk + S(1− S),

1

2
LH2 = |∇H|2 +H2(1− S),

1

2
LR = |∇H|2 −

∑
i,j,k

h2
ijk +R(1− S), (2.4)

where hijk is the component of the covariant derivative of the second funda-
mental form.

2.2 Translators

For translators in a Euclidean space, Xin [34] introduced the following elliptic
operator

LIIf = ∆f + 〈V,∇f〉,

where ∆ and ∇ denote the Laplacian and the gradient operator on the trans-
lator, respectively and 〈·, ·〉 denotes the standard inner product of Rn+1. Then
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we have the following Bochner formula for the squared norm of the second
fundamental form and mean curvature respectively (cf. [31, 34]).

1

2
LIIS =

∑
i,j,k

h2
ijk − S2,

1

2
LIIH

2 = |∇H|2 −H2S,

where hijk is the component of the covariant derivative of the second funda-
mental form. Therefore by the Gauss equation (2.3) we have

1

2
LIIR = |∇H|2 −

∑
i,j,k

h2
ijk −RS. (2.5)

2.3 Self-expanders

For self-expanders in a Euclidean space, one can introduce the following elliptic
operator

LIIIf = ∆f + 〈X,∇f〉,

where ∆ and ∇ denote the Laplacian and the gradient operator on the self-
expander, respectively and 〈·, ·〉 denotes the standard inner product of Rn+1.

We have (cf. [12])

1

2
LIIIS =

∑
i,j,k

h2
ijk − (S + 1)S,

1

2
LIIIH

2 = |∇H|2 − (S + 1)H2,

where hijk is the component of the covariant derivative of the second funda-
mental form. Then by the Gauss equation (2.3) we have

1

2
LIIIR = |∇H|2 −

∑
i,j,k

h2
ijk −R(S + 1). (2.6)

3 Proofs

Proof of Theorem 1.2. Now assume that M is an n-dimensional complete self-
shrinker in Rn+1 satisfying assumptions of Theorem 1.2. Then from equation
(2.3), we see that

H2 − S = R > 0,

and

H2|∇H|2 =
∑
k

(∑
ij

hijhijk

)2

≤
∑
ij

h2
ij

∑
i,j,k

h2
ijk = S

∑
i,j,k

h2
ijk,



Complete Self-similar Hypersurfaces to the Mean Curvature Flow 425

which implies that

|∇H|2 ≤
∑
i,j,k

h2
ijk.

Then from equation (2.4) we obtain

R(1− S) =
∑
i,j,k

h2
ijk − |∇H|2 ≥ 0,

which implies that

S ≤ 1. (3.1)

Therefore from Theorem 1.1 in [6] we see that M is isometric to Sm(
√
m) ×

Rn−m, 2 ≤ m ≤ n− 1 or Sn(
√
n).

Proof of Theorem 1.3. From equation (2.4) since R = 0 we have

|∇H|2 =
∑
i,j,k

h2
ijk. (3.2)

On the other hand, from the Gauss equation (2.3) we see that

H2 =
∑
i,j

h2
ij (3.3)

and hence we have

H2|∇H|2 =
∑
k

(∑
i,j

hijhijk

)2

.

Note that since ∑
k

(∑
i,j

hijhijk

)2

≤
∑
ij

h2
ij

∑
i,j,k

h2
ijk,

with equality holding at non-totally geodesic points if and only if

hijk = λkhij ,

we get

H2|∇H|2 ≤
∑
ij

h2
ij

∑
i,j,k

h2
ijk,

with equality holding at non-totally geodesic points if and only if

hijk = λkhij .

Then from (3.2) and (3.3) we obtain that

hijk = λkhij
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at non-totally geodesic points, where λk are functions on M . Then from the
Codazzi equations (2.2) we see that

λkhij = λihjk

at non-totally geodesic points.
At a non-totally geodesic point p ∈ M assume that hij = µiδij , where

µ1, . . . , µn are principle curvatures of M at p, we have at p

λiµj = 0, if i 6= j.

If there exists some λi 6= 0, say λ1 6= 0, then µj = 0, j = 2, . . . , n and therefore
the sectional curvature of M at p is zero. Therefore M is a complete hyper-
surface in Rn+1 with zero sectional curvature everywhere. Then by Hartman
and Nirenberg [19, Theorem III on page 912], we see that M is isometric to
Γ×Rn−1, where Γ is a complete curve in R2. Then Γ is a complete self-shrinker
in R2.

Proof of Theorem 1.4. we see that M is isometric to Γ × Rn−1, where Γ is a
complete self-shrinker in R2. Assume that X is the position vector of Γ, then
from equation (1.1) we see that

H = ce
|X|2
2 ,

where c is a constant which could be assumed to be nonnegative. If c = 0, Γ is
isometric to R and M is isometric to Rn. If c > 0, Γ is a bounded curve in R2

with polynomial volume growth, which must be closed. Then Γ is isometric to
S1 or an Abresch–Langer curve. This completes the proof of Theorem 1.4.

Proof of Theorem 1.5. Note that this theorem was first proved in [26]. Here we
give a slightly different proof of it.

From equation (2.5), since M has nonnegative constant scalar curvature, we
have

|∇H|2 −
∑
i,j,k

h2
ijk = RS.

First we will show that R = 0. If R is a positive constant, then from the Gauss
equation (2.3) we have

|H|2 −
∑
ij

h2
ij = R > 0,

|H|2|∇H|2 =
∑
k

(∑
i,j

hijhijk

)2

≤
∑
ij

h2
ij

∑
i,j,k

h2
ijk,
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which implies that

|∇H|2 <
∑
i,j,k

h2
ijk.

Therefore we have

RS < 0,

which is impossible.
Now we have that R = 0. Similarly with the proof Theorem 1.3 we can

obtain that M is a complete hypersurface in Rn+1 with zero sectional curvature,
then by Hartman and Nirenberg [19, Theorem III on page 912], we see that M
is isometric to Γ×Rn−1, where Γ is a complete curve in R2. Then Γ is a straight
line in R2 or a complete translator in R2.

To be precise, assume that M is a translator satisfying

H = V N ,

where V is a constant vector in Rn+1. Denote by W the orthogonal projection
of V into the plane P where Γ lies in, then Γ is a straight line in P if W is a
zero vector and Γ is a translator in P satisfying

HΓ = WN ,

where HΓ denotes the mean curvature vector of Γ in P and WN denotes the
normal projection of W onto the normal bundle of Γ in P , if W is not a zero
vector. In the last case Γ is a straight line or is the Grim Reaper curve in R2

(see for example [18]).

Proof of Theorem 1.6. Note that this theorem was first proved in [2], here we
give a slightly different proof of it which is similar with the proof of Theorem
1.5. But we only sketch some main steps.

First since M has constant scalar curvature from (2.6) we have

|∇H|2 −
∑
i,j,k

h2
ijk = R(S + 1).

Then similarly with the proof of Theorem 1.5 we see that R can not be a
positive constant, i.e. R = 0. Then we can prove that M has zero sectional
curvature and hence is isometric to Γ × Rn−1, by Hartman and Nirenberg’s
classification theorem. Then it is easy to see that Γ is a complete self-expander
in R2. Furthermore if Γ is a straight line, M is a hyperplane and if not, M is
a self-expanding hyperplane.
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4 Appendix

In this appendix we give a result to partially confirm the conjecture proposed
in the introduction. We have

Proposition 4.1. Let X : M → Rn+1 be an n-dimensional complete self-
shrinker in Rn+1. If the scalar curvature R of M is a constant larger than
n− 2, it is isometric to the round sphere Sn(

√
n).

Proof. Note that we have proved S ≤ 1 (cf. (3.1)). Since

H2 = R+ S ≥ R > n− 2 ≥ 0,

we may assume that H > 0 and by Newton’s inequality

H ≥
√

nR

n− 1
.

Assume that λ1 ≥ · · · ≥ λn are principle curvatures of M . Then

H2 −R = S

= λ2
1 + · · ·+ λ2

n

≥ 1

n− 1
(H − λn)2 + λ2

n

=
1

n− 1
H2 − 2H

n− 1
λn +

n

n− 1
λ2
n.

Therefore

λn ≥
H

n
−

√(
n− 1

n
H

)2

− n− 1

n
R

=
n−1
n R− n−2

n H2

H
n +

√
(n−1

n H)2 − n−1
n R

.

Since

n− 1

n
R− n− 2

n
H2

≥ n− 1

n
R− n− 2

n
(1 +R)

=
R− (n− 2)

n
,

we see that when R > n− 2, there is a positive constant εn which depends only
on n such that

λn ≥
R− (n− 2)

H +
√

(n− 1)2H2 − n(n− 1)R
≥ εn.

Then by Bonnet–Myers’ theorem, M is compact and hence the round sphere
Sn(
√
n), by Corollary 3.2 in [17].
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