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Abstract
In this paper, we study the rigidity theorem of closed minimally immersed Legendrian
submanifolds in the unit sphere. Utilizing the maximum principle, we obtain a new char-
acterization of the Calabi torus in the unit sphere which is the minimal Calabi product
Legendrian immersion of a point and the totally geodesic Legendrian sphere. We also estab-
lish an optimal Simons’ type integral inequality in terms of the second fundamental form of
three-dimensional closed minimal Legendrian submanifolds in the unit sphere. Our optimal
rigidity results for minimal Legendrian submanifolds in the unit sphere are new and also can
be applied to minimal Lagrangian submanifolds in the complex projective space.

Mathematics Subject Classification 53C24 · 53C40

1 Introduction

Let M be an n-dimensional closed minimally immersed submanifold in the unit sphere Sn+m

of dimension n +m. Let B be the second fundamental form of this immersion. Simons [27],
Chern, do Carmo and Kobayashi [7], Lawson [16] proved that under the pinching condition

|B|2 ≤ n
2− 1

m
, M must be either one of the Clifford minimal tori Sp

(√
p
n

)
× Sn−p

(√
n−p
n

)

in S
n+1 or the Veronese surface in S

4 unless M is the totally geodesic sphere S
n in S

n+1.
Li and Li [17] improved Simons’ pinching constant to 2n

3 for higher codimension m ≥ 3.
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Chen and Xu [6] obtained the same pinching constant independently by using a different
method. These rigidity results mentioned above can be viewed as an intrinsic rigidity theorem
for pinching of the scalar curvature according to the Gauss equation. The intrinsic rigidity
theorem for pinching of the sectional curvature was obtained by Yau [32], for pinching of
the Ricci curvature by Ejiri [11]. The extrinsic rigidity theorem for pinching of the second
fundamental form was obtained by Gauchman [13].

There are many papers on the particularly interesting case of closed minimal Legendrian
submanifolds in the unit sphereS2n+1 or closedminimalLagrangian submanifolds inCPn (for
an incomplete list, see e.g. [2, 5, 22, 30] for pinching of the scalar curvature, [3, 10, 23, 28, 31,
32] for pinching of the sectional curvature, [19] for pinching of the Ricci curvature). Inspired
by papers of Ros [24, 25] on pinching and rigidity of Kähler submanifolds, Gauchman [14]
and Xia [29] studied pinching of the geometric quantity

�(p):= max
X∈TpM, |X |=1

|B (X , X)|

for closed Lagrangian submanifolds in CPn . In particular, Xia [29] proved that if �2 ≤ 1/2,
then either M is totally geodesic or �2 ≡ 1/2 and the last case was classified completely.

These curvature pinching and characterization results were proved based on analysis of
a Simons’ type formula. This formula is related to a special sort of submanifolds, those
that have parallel second fundamental form. Lagrangian submanifolds in CP

n with parallel
second fundamental form were completely classified by Naitoh [20, 21] for the irreducible
case and byDillen, Li, Vrancken andWang [8] in the general case. The classification theorem
of Dillen, Li, Vrancken and Wang states that Lagrangian submanifolds with parallel second
fundamental form in CPn are one of the following:

(a) totally geodesic submanifolds;
(b) embedded submanifolds which are locally congruent to one of the following standard

embeddings in CP
n :

SU(k)/SO(k), n = (k − 1)(k + 2)/2, k ≥ 3,

SU(k), n = k2 − 1, k ≥ 3,

SU(2k)/Sp(k), n = 2k2 − k − 1, k ≥ 3,

E6/F4, n = 26;
(c) locally a finite Riemannian covering of the unique flat torus, minimally embedded in

CP
2 with parallel second fundamental form;

(d) locally the Calabi product of a point with a lower dimensional Lagrangian submanifold
with parallel second fundamental form;

(e) locally the Calabi product of two lower dimensional Lagrangian submanifolds with par-
allel second fundamental form.

The examples of a)-c) are minimal Lagrangian submanifolds, but examples of d)-e) contain
both minimal and non-minimal ones. Furthermore the unique minimal submanifold in d) is
the so called Calabi torus, which is the image of Example 1.1 by the Hopf fibration of S2n+1

to CP
n .

Example 1.1 (Calabi torus) Let γ = (γ1, γ2) : S1 −→ S
3 be a Legendrian curve in S3 ⊂ C

2

defined by

γ (t) =
(√

n

n + 1
exp

(√−1

√
1

n
t

)
,

√
1

n + 1
exp

(
−√−1

√
nt

))
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and φ : S
n−1 −→ S

2n−1 ⊂ C
n the totally geodesic Legendrian sphere. Then

F := (γ1φ, γ2) : S1 ×S
n−1 −→ S

2n+1 ⊂ C
n+1 is a minimal Legendrian immersion. Denote

by M :=F
(
S
1 × S

n−1
)
. We call this minimal Legendrian submanifold M the Calabi torus.

One can choose a local orthonormal frame of T M such that the second fundamental form B
satisfies

B
(
e1, e j

) = −
√
1

n
Je j + δ1 j

√
nJe1, j ∈ {1, . . . , n} ,

B
(
ei , e j

) = − δi j

√
1

n
Je1, i, j ∈ {2, . . . , n} .

One can check that

|B|2 = (n − 1)(n + 2)

n
, � = max

X∈T M, |X |=1
|B (X , X)| = n − 1√

n
.

Thus

|B|2 = n + 2√
n

�,

and for n = 3

|B|2 = 2 + �2 = 10

7

(
1 + �2) .

The above mentioned papers in paragraph 2 gave various curvature pinching and charac-
terization results for compact minimal Lagrangian submanifolds of a) (cf. [2, 3, 5, 23, 28,
30]); a) and c) (cf. [10, 22, 31, 32]); and a), b) when k = 3 and c) (cf. [14, 29]). Nevertheless
according to our knowledge such kind of result was missing for the examples in d) and e).
Bewaring of this, Luo and Sun [18] conjectured that if M is a closed minimal Legendrian
submanifold in S

2n+1 and |B|2 ≤ (n + 2)(n − 1)/n, then M is either the totally geodesic
sphere or the Calabi torus (cf. Example 1.1). In this paper we aim to get a curvature pinching
and characterization result for the Calabi torus and we obtain the following theorem.

Theorem 1.1 Let M be a closed minimal Legendrian submanifold in the unit sphere
S
2n+1(n ≥ 2) and B its second fundamental form. Assume the following pinching condi-

tion holds pointwisely,

|B|2 ≤ n + 2√
n

�. (1.1)

Then M is either the totally geodesic sphere or the Calabi torus.
If n = 3, the pinching condition can be changed weakly to

|B|2 ≤ 2 + �2.

Remark 1.1 Checking the proof step by step, we can prove that a closed minimal Legendrian
submanifold M in the unit sphere S

7 with �2 ≤ 2/3 must be the totally geodesic sphere.
Therefore we improve Xia’s result [29] for minimal Lagrangian submanifolds in CP3. From
this, in case of dimension 3, we can obtain Li and Li’s type pinching result [17] , i.e., M is
totally geodesic if |B|2 ≤ 8/3.

It is worth noting that this theorem could be stated similarly for closedminimal Lagrangian
submanifolds in CP

n , due to the well known correspondence of minimal Legendrian sub-
manifolds in S2n+1 and minimal Lagrangian submanifolds inCPn (cf. [4]), or by proofs with
similar arguments.
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We prove Theorem 1.1 by applying a maximum principle for tensors and a Simons’
type formula of closed minimal Legendrian submanifolds in the unit sphere. We will also
use an integral method to get an integral inequality of three-dimensional closed minimal
Legendrian submanifolds in S

7, which implies another pinching and rigidity result for the
three-dimensional Calabi torus in Example 1.1 (cf. Theorem 3.1).

In sect. 2 we give some preliminaries on Legendrian submanifolds of the unit sphere,
including a Simons’ type formula. In sect. 3 we prove an integral inequality of closed Leg-
endrian submanifolds in S

7. Theorem 1.1 is proved in sect. 4. In the Appendix we prove
an integral inequality of closed Lagrangian submanifolds in the nearly Kähler S6 by similar
arguments used in the proof of Theorem 3.1, which improves the main theorem of Hu, Yin
and Yin [15].

2 Preliminaries

Here we briefly record several facts about Legendrian submanifolds in the unit sphere. We
refer readers to [1] for more material on contact geometry.

Let M be a closed n-dimensional submanifold of the unit sphere S2n+1 ⊂ C
n+1. We say

that M is Legendrian if

JT M ⊂ T⊥M, J F ∈ �
(
T⊥M

)

where F : M −→ S
2n+1 is the position vector and J is the complex structure of Cn+1. We

say that M is a minimal Legendrian submanifold of S2n+1 if M is a minimal and Legendrian
submanifold of S2n+1. Define

σ (X , Y , Z) := 〈B (X , Y ) , J Z〉 , ∀X , Y , Z ∈ T M .

The Weingarten equation implies that

σ (X , Y , Z) = σ (Y , X , Z) .

Moreover, by definition, one can check that σ is a tri-linear symmetric tensor, i.e.,

σ (X , Y , Z) = σ (Y , X , Z) = σ (X , Z , Y ) .

The Gauss equation, Codazzi equation and Ricci equation become

R (X , Y , Z ,W ) = 〈X , Z〉 〈Y ,W 〉 − 〈X ,W 〉 〈Y , Z〉 +
∑
i

σ (X , Z , ei ) σ (Y ,W , ei )

−
∑
i

σ (X ,W , ei ) σ (Y , Z , ei ) ,

(∇Xσ) (Y , Z ,W ) = (∇Yσ) (X , Z ,W ) ,

R⊥ (X , Y , J Z , JW ) =
∑
i

σ (X , Z , ei ) σ (Y ,W , ei ) −
∑
i

σ (X ,W , ei ) σ (Y , Z , ei ) ,

where {ei } is an orthonormal basis of T M . The Codazzi equation implies

(∇Xσ) (Y , Z ,W ) = (∇Yσ) (X , Z ,W ) = (∇Xσ) (Z , Y ,W ) = (∇Xσ) (Y ,W , Z) ,

i.e., ∇σ is a four-linear symmetric tensor.
We will need the following Simons’ identity (cf. [27], see also [5, 30]).
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Lemma 2.1 (Simons’ identity)Assume that M is aminimal Legendrian submanifold inS2n+1.
Then

�σi jk :=
∑
l

σi jk,ll

= (n + 1)σi jk + 2
∑
l,s,t

σislσ jltσkts −
∑
l,s,t

σtliσtlsσ jks

−
∑
l,s,t

σtl jσtlsσiks −
∑
l,s,t

σtlkσtlsσi js .

(2.1)

Consequently,

1

2
� |σ |2 = |∇σ |2 + (n + 1) |σ |2 −

∑
i, j

〈
σi , σ j

〉2 −
∑
i, j

∣∣[σi , σ j ]
∣∣2 , (2.2)

where σi = (
σi jk

)
1≤ j,k≤n.

Proof The proof is classical. For readers’ convenience, we provide details of the proof here.
The Ricci identity yields

σi jk,lm = σi jk,ml +
∑
t

σt jk Rtilm +
∑
t

σi tk Rt jlm +
∑
t

σi j t Rtklm .

Therefore,

�σi jk =
∑
l

σi jk,ll

=
∑
l

σi jl,kl

=
∑
l

σi jl,lk +
∑
l,t

σt jl Rtikl +
∑
l,t

σi tl Rt jkl +
∑
l,t

σi j t Rtlkl

=μi, jk +
∑
l,t

σt jl Rtikl +
∑
l,t

σi tl Rt jkl +
∑
l,t

σi j t Rtlkl .

Here μi = tr σi . Thus by the Gauss equation,

�σi jk =μi, jk +
∑
l,t

σt jl (δtkδil − δtlδik + σtksσils − σtlsσiks)

+
∑
l,t

σtil
(
δtkδ jl − δtlδ jk + σtksσ jls − σtlsσ jks

)

+
∑
l,t

σi j t ((n − 1)δtk + σtksσlls − σtlsσlks)

=μi, jk + σi jk − μ jδik +
∑
l,s,t

σt jl (σtksσils − σtlsσiks)

+ σi jk − μiδ jk +
∑
l,s,t

σtil
(
σtksσ jls − σtlsσ jks

)

+ (n − 1)σi jk +
∑
l,s,t

σi j t (σtksμs − σtlsσlks)

=μi, jk − μiδ jk − μ jδik +
∑
s,t

σi j tσtksμs

123
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+ (n + 1)σi jk + 2
∑
l,s,t

σt jlσtksσils −
∑
l,s,t

σt jlσtlsσiks

−
∑
l,s,t

σtilσtlsσ jks −
∑
l,s,t

σtlsσlksσi j t

=(n + 1)σi jk + 2
∑
l,s,t

σt jlσtksσils −
∑
l,s,t

σt jlσtlsσiks

−
∑
l,s,t

σtilσtlsσ jks −
∑
l,s,t

σtlsσlksσi j t ,

where we used the fact that μi = 0 since M is minimal. ��

3 An integral inequality for the three-dimensional case

In this section we prove an integral inequality for closed three-dimensional minimal Legen-
drian submanifolds in S7, which is inspired by a recent paper of Hu,Yin and Yin [15].

Theorem 3.1 Let M be a closed minimal Legendrian submanifold in the unit sphere S7. Then
∫

M
|B|2

(
|B|2 − 10

7

(
1 + �2)

)
≥ 0. (3.1)

Consequently, if

|B|2 ≤ 10

7

(
1 + �2) ,

then M is either the totally geodesic sphere or the Calabi torus.

Remark 3.1 We would like to point out that though the pinching result we obtain by integral
estimates here is actually weaker than that we obtain in Theorem 1.1, we can not get any
integral inequality like (3.1) by the maximum principle used in the proof of Theorem 1.1.
Furthermore here we slightly refine the argument in [15] and use it to give an improvement
of the main theorem in [15], please see TheoremAppendix A.1 in the Appendix for details. It
seems that themaximumprinciple is not applicable in proving pinching results for Lagrangian
submanifolds in the nearly Kähler S6.

Proof of Theorem 3.1 Consider an algebraic curvature R̂ defined by

R̂i jkl = 〈
B (ei , ek) ,B

(
e j , el

)〉 − 〈
B (ei , el) ,B

(
e j , ek

)〉
,

i.e.,

R̂i jkl =
∑
a

(
σikaσ jla − σilaσ jka

) = [σi , σ j ]kl .

The algebraic Ricci curvature R̂ic and the algebraic scalar curvature Ŝ are given by

R̂ici j =
∑
a

R̂ia ja = − 〈
σi , σ j

〉
, Ŝ =

∑
i

R̂icii = − |σ |2 .

We then can rewrite Simons’ identity (2.2) as follows

1

2
� |σ |2 = |∇σ |2 + (n + 1) |σ |2 −

∣∣∣R̂ic
∣∣∣
2 −

∣∣∣R̂
∣∣∣
2
. (3.2)

123
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Recall the orthogonal decomposition for the algebraic curvature

R̂ = Ŵ + 1

n − 2
˚̂Ric � g + Ŝ

2n(n − 1)
g � g,

where Ŵ is the algebraic Weyl curvature and ˚̂Ric = R̂ic − Ŝ
n g is the traceless algebraic

Ricci curvature. We have the following identity

∣∣∣R̂
∣∣∣
2 =

∣∣∣Ŵ
∣∣∣
2 +

4
∣∣∣ ˚̂Ric

∣∣∣
2

n − 2
+ 2Ŝ2

n(n − 1)

=
∣∣∣Ŵ

∣∣∣
2 +

4
∣∣∣R̂ic

∣∣∣
2

n − 2
− 2Ŝ2

(n − 1)(n − 2)
.

For n = 3, the algebraic Weyl curvature Ŵ vanishes. It follows from (3.2) that

1

2
� |σ |2 = |∇σ |2 + 4 |σ |2 − 5

∣∣∣R̂ic
∣∣∣
2 +

∣∣∣Ŝ
∣∣∣
2

= |∇σ |2 + 4 |σ |2 − 5
3∑

i, j=1

〈
σi , σ j

〉2 + |σ |4 .

At a point p, choose e1 such that

σ111 = max
X∈SpM3

σ (X , X , X) ,

then σ112 = σ113 = 0. Then we choose {e2, e3} such that σ123 = 0. In other words, we may
assume

σ1 =
⎛
⎝

λ1 + λ2 0 0
0 −λ1 0
0 0 −λ2

⎞
⎠ , σ2 =

⎛
⎝

0 −λ1 0
−λ1 μ1 μ2

0 μ2 −μ1

⎞
⎠ , σ3 =

⎛
⎝

0 0 −λ2
0 μ2 −μ1

−λ2 −μ1 −μ2

⎞
⎠ .

A direct calculation yields

|σ |2 =4λ21 + 4λ22 + 2λ1λ2 + 4
(
μ2
1 + μ2

2

)

=5

2
(λ1 + λ2)

2 + 3

2
(λ1 − λ2)

2 + 4
(
μ2
1 + μ2

2

)
,

∑
i, j

〈
σi , σ j

〉2 =4
(
λ21 + λ22 + λ1λ2

)2 + 4
(
λ21 + μ2

1 + μ2
2

)2 + 4
(
λ22 + μ2

1 + μ2
2

)2

+ 2 (λ1 − λ2)
2 (

μ2
1 + μ2

2

)

=11

4
(λ1 + λ2)

4 + 3

4
(λ1 − λ2)

4 + 8
(
μ2
1 + μ2

2

)2

+ 9

2
(λ1 + λ2)

2 (λ1 − λ2)
2 + 4 (λ1 + λ2)

2 (
μ2
1 + μ2

2

)

+ 6 (λ1 − λ2)
2 (

μ2
1 + μ2

2

)
.

Set

x = (λ1 + λ2)
2 , y = (λ1 − λ2)

2 , z = 4
(
μ2
1 + μ2

2

)
,

123
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then

|σ |2 =5

2
x + 3

2
y + z,

∑
i, j

〈
σi , σ j

〉2 =11

4
x2 + 3

4
y2 + 1

2
z2 + 9

2
xy + xz + 3

2
yz,

1

5
|σ |4 =5

4
x2 + 9

20
y2 + 1

5
z2 + 3

2
xy + xz + 3

5
yz.

For every κ , we have

∑
i, j

〈
σi , σ j

〉2 − 1

5
|σ |4 =3

2
x2 + 3

10
y2 + 3

10
z2 + 3xy + 9

10
yz

=3

2

(
x + κ y + 2κ

3
z

) (
x + 3

5
y + 2

3
z

)
+ 3

10
y2

+ 3

10
z2 + 3xy + 9

10
yz

− 9κ

10
y2 − 2κ

3
z2 − 15κ + 9

10
xy − (1 + κ) xz − 8κ

5
yz

=3

2

(
x + κ y + 2κ

3
z

) (
x + 3

5
y + 2

3
z

)

− 9κ − 3

10
y2 − 20κ − 9

30
z2 − 15κ − 21

10
xy

− (1 + κ) xz − 16κ − 9

10
yz.

For κ ≥ 7
5 ,

∑
i, j

〈
σi , σ j

〉2 − 1

5
|σ |4 ≤3

2

(
x + κ y + 2κ

3
z

) (
x + 3

5
y + 2

3
z

)

=2κ

5

(
|σ |2 − 5κ − 3

2κ
�2

)
|σ |2 .

Therefore we have the estimate

1

2
� |σ |2 ≥ |∇σ |2 + 2κ

(
2

κ
+ 5κ − 3

2κ
�2 − |σ |2

)
|σ |2 , ∀κ ≥ 7

5
.

In particular, taking κ = 7
5 we obtain

1

2
� |σ |2 ≥ |∇σ |2 + 14

5

(
10

7

(
1 + �2) − |σ |2

)
|σ |2 .

By integral by parts, we prove the first claim of the theorem.
If |B|2 ≤ 10

7

(
1 + �2

)
, we must have either B ≡ 0 and M is totally geodesic or |B|2 =

10
7

(
1 + �2

)
and λ1 = λ2 = ±

√
3
3 , μ1 = μ2 = 0 and M must be the minimal Calabi torus

by [18] since M is closed. ��
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4 Proof of Theorem 1.1

In this section, we will give a proof of Theorem 1.1. Firstly we need to prove several lemmas
about the function �.

Let SM be the unit tangent bundle of M and SpM the fibre of the unit tangent bundle of
M at p ∈ M . We have the following characterization of the function �.

Lemma 4.1

�(p) = max
X∈SpM

σ (X , X , X) . (4.1)

Proof It is a straightforward verification. For readers’ convenience, we list a proof here.
It suffices to prove that

max
X∈SpM

σ (X , X , X) ≥ �(p).

Assume for some u ∈ SpM ,

�(p) = max
X∈SpM

|B (X , X)| = |B (u, u)| .

Choose a local orthonormal basis {ei } of TpM such that e1 = u. Applying the maximum
principle,

〈
AB(u,u) (e1) , e j

〉
= 〈

B (e1, e1) ,B
(
e1, e j

)〉 = 0, ∀ j > 1.

Here Aν is the shape operator associated with the normal vector ν. Thus,

AJuAJu (e1) = AJe1 (−JB (e1, e1)) = AB(u,u) (e1) = |B (e1, e1)|2 e1.
We conclude that

AJu (e1) = ± |B (e1, e1)| e1.
Consequently,

�(p) = max
X∈SpM

|B (X , X)| = |B (e1, e1)| = ±
〈
AJu (e1) , e1

〉
= ±σ (e1, e1, e1)

≤ max
X∈SpM

σ (X , X , X) .

��
In the rest of this paper we will use the equivalent description (4.1) of �.

Lemma 4.2 � is a nonnegative Lipschitz function on M.

Proof It suffices to prove that for every p1, p2 ∈ M ,

�(p1) ≤ �(p2) + max
M

|∇σ | dist(p1, p2).

Choose a geodesic γ : [0, ρ] −→ M connecting p1 and p2, i.e., γ (0) = p1, γ (ρ) = p2,
where ρ = dist(p1, p2). Assume

�(p1) = σ(e, e, e),

123
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where e ∈ Sp1M . We can extend e to a tangent unit vector field e(t) ∈ Tγ (t)M along γ (t)
by parallel transport. Consider the function f (t) = σ (e(t), e(t), e(t)), then

�(p1) − �(p2) ≤ f (0) − f (ρ) = f ′(t0)ρ = (∇γ̇ (t0)σ
)
(e (t0) , e (t0) , e (t0)) ρ,

where t0 ∈ (0, ρ). Therefore,

�(p1) − �(p2) ≤ max
M

|∇σ | dist(p1, p2).
��

Choose e1(p) ∈ SpM such that

�(p) = σ (e1(p), e1(p), e1(p)) .

Applying the method of Lagrange multipliers we obtain

σ (e1(p), e1(p), X) = �(p) 〈e1(p), X〉 , ∀X ∈ TpM .

Hence we can choose an orthonormal basis {e1(p), e2(p), . . . , en(p)} of TpM such that

σ
(
e1(p), ei (p), e j (p)

) = μi (p)δi j ,

where �(p) = μ1(p) ≥ μ2(p) ≥ · · · ≥ μn(p). Applying the maximum principle, one can
check by definition directly that μ1(p) ≥ 2μ2(p). We say that �(p) is of multiplicity one if

e ∈ SpM, σ (e, e, e) = σ (e1(p), e1(p), e1(p)) = �(p) �⇒ e = e1(p).

Lemma 4.3 If μ1(p0) > 2μ2(p0) and �(p0) is of multiplicity one, then there is a unique
smooth unit tangent vector field e around a neighborhoodU ⊂ M of p0 with e(p0) = e1(p0)
such that

�(p) = σ (e(p), e(p), e(p)) , ∀p ∈ U .

Proof Consider a smooth map

f : SM × R −→ T M, ((p, u), λ) �→
⎛
⎝p, λu −

n∑
j=1

σ
(
u, u, e j (p)

)
e j (p)

⎞
⎠

=: (p, h(p, u, λ)) ,

where
{
e j (p)

}n
j=1 is an orthonormal basis of TpM . We compute

dh (θk) =λθk − 2σ
(
u, θk, e j (p)

)
e j (p), k = 1, . . . , n − 1,

dh

(
∂

∂λ

)
=u,

where {θk}n−1
k=1 is an orthonormal basis of Tu

(
SpM

)
. Notice that {e2(p0), . . . , en(p0)} is an

orthonormal basis of Te1(p0)
(
Sp0M

)
. The assumption gives us

det
(
d f |((p0,e1(p0)),μ1(p0))

) = �n
j=2

(
μ1(p0) − 2μ j (p0)

) �= 0.

Apply the inverse function theory to conclude that f : � −→ f (�) is a diffeomorphism
for some neighborhood � ⊂ SM × R of (p0, e1(p0), μ1(p0)). In particular, for some
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neighborhood Û ⊂ M of p0, there is λ ∈ C∞
(
Û

)
and e ∈ �

(
SÛ

)
such that λ(p0) =

�(p0), u(p0) = e1(p0) and

σ
(
u(p), u(p), e j (p)

)
e j (p) = λ(p)u(p), p ∈ Û .

Consider a second order tensor φ(·, ·) = σ (u, ·, ·) on Û . Let λ1 ≥ λ2 ≥ · · · ≥ λn be
the eigenvalues of φ. One can check that λ1 = λ with eigenvector u and λk(p0) = μk(p0).
Moreover, each λk is local Lipschitz in Û . Assume �(p) = σ (e, e, e) where e = e(p) =
cos tu(p) + sin tv ∈ TpM and v ⊥ u(p). By assumption, choose ε > 0 such that

�(p0) = λ1(p0) > (2 + ε) λ2(p0).

If cos t < 1, we claim that

cos t ≤ 1

1 + ε
,

in a neighborhood Ũ ⊂ Û of p0. In fact, by definition of �, we have

σ (e, e, u(p)) = �(p) 〈e, u(p)〉 ,

which implies that

cos t�(p) = cos2 tλ(p) + sin2 tφ(v, v).

Without loss of generality, assume 0 < cos t < 1, then

�(p) = cos tλ(p) + sin2 t

cos t
φ (v, v) .

We get

�(p) ≤ 1 + cos t

cos t
φ (v, v) ≤ 1 + cos t

cos t
λ2(p).

Thus λ2(p) > 0 and

cos t ≤ λ2(p)

�(p) − λ2(p)
.

By the continuity of � and λ2, we prove the claim.
Now we claim that there is a neighborhood U ⊂ Ũ of p0 such that e(p) = u(p) for all

p ∈ U . Otherwise, there are sequences {pn} ⊂ U ,
{
vn ∈ Spn M

}
, {tn} ⊂ [0, 2π] such that

en = cos tnu(pn) + sin tnvn satisfies

�(pn) = σ (en, en, en) , cos tn ≤ 1

1 + ε
, ∀n.

Without loss of generality, assume lim
n→∞ qn = p, lim

n→∞ tn = t, lim
n→∞ vn = v. Since � is

continuous according to Lemma 4.2, u:= lim
n→∞ un = cos tu(p0) + sin tv �= e1(p0) satisfies

�(p0) = σ (u(p0), u(p0), u(p0)) ,

which is a contradiction. ��
Now we are prepared to give a proof of our main Theorem 1.1.
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Proof of Theorem 1.1 When n = 2 we have |B|2 = 4�2, therefore (1.1) is equivalent to
|B|2 ≤ 2 and we get the conclusion from [31].

We need to check the case n ≥ 3. Assume that M is not totally geodesic and � achieves
its maximum value at p0. Choose an orthonormal basis {ei }ni=1 of Tp0M such that

μ1 = σ111 (p0) = �(p0).

One can check that

σ11 j (p0) = 0, j = 2, . . . , n.

Thus, we may assume that

σ1 jk(p0) = μ jδ jk, 1 ≤ j, k ≤ n.

For each ei , choose a geodesic γ : (−ε, ε) −→ M with γ (0) = p0, γ̇ (0) = ei . We move
e1 ∈ Tp0M along the geodesic γ (t) to e1(t) ∈ Tγ (t)M by parallel transport. Consider the
function f : (−ε, ε) −→ R defined by

f (t) = σ (e1(t), e1(t), e1(t)) .

Then f (t) achieves its local maximum value at t = 0. The maximum principle gives

0 ≥ f ′′(0) = σ111,i i (p0).

Thus

�σ111(p0) ≤ 0.

Now applying Simons’ identity (2.1), we have at p0

0 ≥ (n + 1) σ111 + 2σ1abσ1bcσ1ca − 3σ1abσabcσ11c

= (n + 1) μ1 + 2
∑
j

μ3
j − 3μ1

∑
j

μ2
j

= (n + 1) μ1 − μ3
1 + 2

∑
j>1

μ3
j − 3μ1

∑
j>1

μ2
j .

Without loss of generality, assume μ1 > 0. Set

a j = −μ j , j > 1.

Since
∑

j μ j = 0, we get

0 ≥ (n + 1)
∑
j>1

a j −
⎛
⎝∑

j>1

a j

⎞
⎠

3

− 2
∑
j>1

a3j − 3
∑
j

a j

∑
k>1

a2k

= (n + 1)
∑
j>1

a j − 6

⎛
⎝∑

j>1

a j

⎞
⎠

3

+ 12
∑
i>1

ai
∑
j>k>1

a jak − 6
∑

i> j>k>1

aia j ak .

By Newton’s inequality,

∑
i> j>k>1

aia j ak ≤ 2(n − 3)

3(n − 2)

(∑
j>k>1 aia j

)2
∑

i>1 ai
,
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the equality holds if and only if

μ2 = μ3 = · · · = μn .

We obtain

0 ≥n + 1 − 6

⎛
⎝∑

j>1

a j

⎞
⎠

2

+ 12
∑
j>k>1

a jak − 4(n − 3)

n − 2

(∑
j>k>1 a jak

)2
(∑

i>1 ai
)2 . (4.2)

Define β by

β = μ2
1 + 3

∑
j>1

μ2
j = 4

⎛
⎝∑

j>1

a j

⎞
⎠

2

− 6
∑
j>k>1

a jak,

then (4.2) gives

0 ≥ n + 1 + 2μ2
1 − 2β − n − 3

9(n − 2)

(
4μ1 − β

μ1

)2

= n + 1 + 2(n + 6)

9(n − 2)

(
5n − 6

2(n + 6)

β

μ1
− μ1

)2

− 3n

2(n + 6)

β2

μ2
1

.

Since

β ≥ μ2
1 + 3

n − 1

⎛
⎝∑

j>1

μ j

⎞
⎠

2

= n + 2

n − 1
μ2
1,

we have

5n − 6

2(n + 6)

β

μ1
− μ1 ≥ n − 1

n + 2

β

μ1
− μ1 ≥ 0.

Therefore,

5n − 6

2(n + 6)

β

μ1
−

√
27n(n − 2)

4(n + 6)2
β2

μ2
1

− 9(n + 1)(n − 2)

2(n + 6)
≤ μ1 ≤ n − 1

n + 2

β

μ1
,

which implies

β ≥ n + 2√
n

μ1.

We conclude that

|B|2 ≥ β ≥ n + 2√
n

μ1.

If n = 3, we have the following estimate

|B|2 ≥ β ≥ 2 + μ2
1.

Therefore under the assumption (1.1), we must have |B|2 = n+2√
n

μ1 at p0 and

σ1 jk (p0) = μ jδ jk, j, k = 1, . . . , n (4.3)

σi jk (p0) = 0, i, j, k > 1. (4.4)

Moreover, μ2 = · · · = μn = − 1
n−1μ1 < 0.
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Claim � is a constant on M .

If this claim is true, then the previous argument claims that conditions (4.3) and (4.4)
hold everywhere. As an immediate consequence, M is the Calabi torus (cf. [18]) since M is
closed.

Now we prove the above claim as follows.

Proof of the Claim Consider the nonempty subset � of M defined by

�:= {p ∈ M : �(p) = μ1} .

Since � is continuous, we know that � is a closed subset of M . Then it suffices to prove that
� is also an open subset of M since M is connected.

Firstly we claim that �(p0) is of multiplicity one, i.e., the unit tangent vector e ∈ Tp0M
with σ (e, e, e) = μ1 is unique. In fact, put e = ∑

i x
i ei , then

∑
j x

j x j = 1 and

μ1 = σ (e, e, e)

= xi x j xkσi jk

= x1x1x1μ1 + 3x1
∑
j>1

x j x jμ j

= x1x1x1μ1 − μ1

n − 1
x1

(
1 − x1x1

)
.

We must have x1 = 1 and e = e1. Therefore, by Lemma 4.3 we can extend e1 to a smooth
tangent vector field still denoted by e1 in a neighborhood U of p0, such that for all p ∈ U
we have

�(p) = σ(e1, e1, e1)(p).

Secondly, we claim that � is subharmonic in U . In fact, we have

∇e j � = σ111, j + 3σ11i
〈∇e j e1, ei

〉 = σ111, j = σ11 j,1,

and for j > 1,

0 =∇e1σ11 j

= σ11 j,1 + 2σ1k j
〈∇e1e1, ek

〉 + σ11k
〈∇e1e j , ek

〉

= σ11 j,1 + 2
∑
k>1

σ1k j
〈∇e1e1, ek

〉 + σ111
〈∇e1e j , e1

〉

= σ11 j,1 + 2
∑
k>1

σ1k j
〈∇e1e1, ek

〉 − σ111
〈∇e1e1, e j

〉
.

At a considered point p ∈ U , we may assume σ1 jk = σ1 j jδ jk and ∇ei e j = 0 for i, j > 1.
We get

∇e1� = σ111,1,

∇e j � = (
� − 2σ1 j j

) 〈∇e1e1, e j
〉
, j > 1,
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and

�� =∇e j ∇e j � − ∇∇e j e j
�

=
⎛
⎝σ111,11 + 4

∑
j>1

σ111, j
〈∇e1e1, e j

〉
⎞
⎠

+
∑
j>1

(
σ111, j j + 3

∑
k

σ11k, j
〈∇e j e1, ek

〉 +
∑
k

σ111,k
〈∇e j e j , ek

〉)

−
∑
j>1

∇e j �
〈∇e1e1, e j

〉

=�σ111 + 3
∑
j>1

∇e j �
〈∇e1e1, e j

〉

=�σ111 + 3
∑
j>1

(
� − 2σ1 j j

) 〈∇e1e1, e j
〉2

,

where in the second equality we used the symmetry of the four-linear tensor (σi jk,l). By
assumption (1.1), the previous argument implies that

�σ111 ≥ 0.

Therefore, we have for all p ∈ U ,

�� ≥ 3
∑
i>1

(� − 2σ1i i )
〈∇e1e1, ei

〉2
.

One can check that σ11i (p) = 0 and �(p) ≥ 2σ1i i (p) for all i > 1 and all p ∈ U . Thus
� is subharmonic in U . Since � achieves its local maximum value at p0 ∈ U , the strong
maximum principle implies that � locally must be a constant in U . We conclude that p0 is
an interior point of �. Thus � is an open subset of M . Therefore, � is constant on M . ��

At the end let us show that when n = 3, condition (1.1) implies |B|2 ≤ 2 + �2. Since
5
2�

2 ≤ |B|2 ≤ 5√
3
�, we have� ≤ 2√

3
, and�2 +2− 5√

3
� =

(
� − 2√

3

)2 + 2
3 − 1√

3
� ≥ 0.

Therefore |B|2 ≤ 5√
3
� implies |B|2 ≤ 2+ �2. This completes the proof of Theorem 1.1. ��

Appendix A. An application to lagrangian submanifolds in the nearly
Kähler S6

Here we give a slight improvement of the main theorem in [15] as follows, by similar argu-
ments used in the proof of Theorem 3.1.

Theorem Appendix A.1 Let M be a closed Lagrangian submanifold in the homogeneous
nearly Kähler S6. Then we have

∫

M
|B|2

(
|B|2 − 75

56
− 10

7
�2

)
≥ 0. (4.5)

Moreover, the equality in (4.5) holds if and only if M is either the totally geodesic sphere,
or the Dillen-Verstraelen-Vrancken’s Berger sphere (see [9, Theorem 5.1]) which satisfies

|B|2 = 75
56 + 10

7 �2 with |B|2 ≡ 25
8 and � ≡

√
5
2 .
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Proof Here we only give a brief sketch. For more details please see [15]. We identify R
7 as

the imaginary Cayley numbers. The Cayley multiplication induces a cross product “ × " on
R
7. The almost complex structure J on S

6 ⊂ R
7 is then given by

J X :=x × X , ∀X ∈ TxS
6.

Let ∇̄ be the Levi-Civita connection on S
6, then

(∇̄X J
)
X = 0 for all X ∈ TS6. Then

ωi jk = 〈(∇̄ei J
)
e j , Jek

〉
is the volume formofM . SinceM isLagrangian, i.e., JT M ⊂ T⊥M ,

we have ([26, Lemma 3.2])

B
(
ei ,

(∇̄e j J
)
ek

) = J
(
∇̄B(ei ,e j) J

)
ek + J

(∇̄e j J
)
B (ei , ek) ,

which implies that M is minimal (cf. [12, Theorem 1]). We have the following Simons’
identity (cf. [7])

1

2
� |B|2 =

∣∣∣∇⊥B
∣∣∣
2 + 3 |B|2 −

3∑
α,β=1

〈
Aνα ,Aνβ

〉2 −
3∑

α,β=1

∣∣[Aνα ,Aνβ
]∣∣2 .

Here {να} is a local orthonormal frame of T⊥M . Set

σi jk = 〈
B

(
ei , e j

)
, Jek

〉
,

then σ is a tri-linear symmetric tensor. One can check that

σi jk,l =
〈(

∇⊥
ei B

) (
e j , ek

)
, Jel

〉
.

Introduce

ui jkl :=1

4

(
σi jk,l + σ jkl,i + σkli, j + σli j,k

)

=σi jk,l − 1

4

(
σ jkmωlim + σikmωl jm + σi jmωlkm

)
.

One can check that u is a four-linear symmetric tensor and
∑

i uii j,k = 0. By using the fact
σi jk,l = σi jl,k + σi jmωlkm , a direct calculation yields (cf. [15, emma 4.4])

∣∣∣∇⊥B
∣∣∣
2 = |u|2 + 3

4
|B|2 .

We therefore obtain

1

2
� |σ |2 = |u|2 + 15

4
|σ |2 −

3∑
i, j=1

〈
σi , σ j

〉2 −
3∑

i, j=1

∣∣[σi , σ j ]
∣∣2 ,

where σi = (
σi jk

)
1≤ j,k≤n . Then, similarly as in the proof of Theorem 3.1, we obtain

1

2
� |B|2 ≥ 14

5

(
75

56
+ 10

7
�2 − |B|2

)
|B|2 .

The rest of the proof follows from that in [15]. ��
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