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Legendrian capillary boundary
Lagrangian catenoid

1. Introduction

Let Cn = R2n be the standard complex plane with its canonical Kähler form ω and 
almost complex structure J . Let S2n−1 be the (2n − 1)-dimensional unit sphere with 
standard Sasakian structure. Then an n-dimensional submanifold Σn in Cn is called a 
Lagrangain submanifold if JTΣn = T⊥Σn, where T⊥Σn denotes the normal bundle of 
Σn in Cn, and an (n −1) dimensional submanifold Kn−1 in S2n−1 is called a Legendrian 
submanifold if R ⊥ TKn−1, where R is the Reeb field of S2n−1 with R(x) = Jx for 
every x ∈ S2n−1.

It is well known that Lagrangian submanifolds in a complex space form have many 
similarities with hypersurfaces in a real space form. Recently, inspired by the study of 
capillary hypersurfaces M in Bn+1 ⊂ Rn+1 (see for example [16,19]), which have constant 
mean curvature, non-empty boundary such that M̊ ⊂ B̊n+1 and ∂M ⊂ ∂Bn+1 = Sn, 
which intersect ∂Bn+1 with a constant angle, Li, Wang and Weng [12] initiated a study 
of Lagrangian submanifolds with Legendrian capillary boundary in B2n ⊂ Cn.

First let us recall some definitions introduced in [12]. Let x : Σn → B2n be a La-
grangian submanifold with ∂Σn ⊂ ∂B2n = S2n−1 being a Legendrian submanifold. Li, 
Wang and Weng observed that the unit normal ν at x ∈ ∂Σn ⊂ Σn lies in the plane 
spanned by x and Jx, i.e. there exists a θ = θ(x) ∈ [0, π) such that

ν = sin θx + cos θJx.

The angle θ is called a contact angle and Σn is called a Lagrangian submanifold with 
Legendrian capillary boundary (or simply capillary Lagrangian submanifold), if the con-
tact angle is a local constant. When θ = π

2 , Σn is called a Lagrangian submanifold with 
Legendrian free boundary, or a free boundary Lagrangian submanifold.

When n = 2, typical examples of minimal Lagrangian surfaces in B4 with Legendrian 
capillary boundary are the equatorial plane disk and the Lagrangian catenoids, as dis-
cussed in [12] (see also Example 3.1). Note that the contact angle for the equatorial 
plane disk is π2 , but the contact angle for Lagrangian catenoids are constants which are 
not equal to π2 . Li, Wang and Weng [12] got the following Nitche (or Hopf) type rigidity 
theorem.

Theorem 1.1 (Li, Wang and Weng). Given D :=
{
(x1, x2) : x2

1 + x2
2 ≤ 1

}
. Let x : D −→

B4 be a (branched) minimal Lagrangian surface with Legendrian capillary boundary on 
S3. Then x(D) is an equatorial plane disk.
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This theorem is the Lagrangian counterpart of related results for capillary surfaces in 
Bn by Nitsche [15], Ros and Souam [17] and Fraser and Schoen [6]. Then they conjectured 
that:

There is no annulus type minimal Lagrangian surface with Legendrian free boundary.

Moreover, they made the following conjecture [12, Conjecture 2.16].

Conjecture 1. Any embedded annulus type minimal Lagrangian surface with Legendrian 
capillary boundary on S3 is one of the Lagrangian catenoids.

This conjecture is the Lagrangian counterpart of the conjecture for free boundary 
minimal surfaces in B3 proposed by Fraser and Li [5].

Conjecture 2 (Fraser-Li). The critical catenoid is the unique embedded free boundary 
minimal annulus in B3.

In this paper, we first show that Lagrangian minimal surfaces in B4 with Legendrian 
free boundary must be an equatorial plane disk (Theorem 3.1), which extends Theo-
rem 1.1 in the Legendrian free boundary case and confirms the statement:

There is no annulus type minimal Lagrangian surface with Legendrian free boundary.

Finally, we give an affirmative answer to Conjecture 1. Actually, we prove that Conjec-
ture 1 is true without the embeddedness assumption (Theorem 3.3).

As is well known, hypersurfaces in a real space form have many similarities with 
Lagrangian submanifolds in a complex space form, and many rigidity results for minimal 
hypersurfaces in a real space form have their Lagrangian counterparts. But according to 
our knowledge, rigidity results in the Lagrangian submanifolds case are always much more 
complicated and their proofs (if they exist) need more job. Consequently, although some 
rigidity results are true for minimal hypersurfaces in a real space form, their Lagrangian 
counterparts are still open. For example Brendle [1] proved the longstanding Lawson’s 
conjecture, which states that the Clifford torus is the unique embedded minimal tori in 
S3. But its Lagrangian counterpart, that is, whether embedded minimal Lagrangian tori 
in CP 2 are given by the examples constructed by Haskins [8] with certain symmetry 
(see also [3,9]), remains widely open. Another example is the conjecture given by us [14, 
Conjecture 1] on the first pinching constant of closed minimal Lagrangian submanifolds 
in CPn, while the case of closed minimal hypersurfaces was established by Simons [13], 
Chern, do Carmo and Kobayashi [4] and Lawson [11].

Bewaring of this, it would be a surprise for us to see that though Fraser and Li’s 
conjecture, i.e. Conjecture 2, remains open, but its Lagrangian counterpart, i.e. Conjec-
ture 1, could be verified. The above mentioned Nitsche (or Hopf) type rigidity results 
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for capillary surfaces [6,15,17] and Theorem 1.1 were proved by the technique of Hopf’s 
holomorphic cubic form, while in our proof of Conjecture 1 we use simultaneously Hopf’s 
holomorphic cubic form for several times and the uniqueness of solutions for the Laplacian 
equation on a Euclidean domain with Dirichlet boundary value. The main observation is 
that, the boundary of a minimal Lagrangian submanifold in B2n with Legendrian capil-
lary boundary on S2n−1 is still minimal (see Lemma 2.2). Here we would like to point out 
that Kapouleas and Li [10] observed that by a Björling-type uniqueness result for free 
boundary minimal surfaces, to prove Fraser and Li’s conjecture, it suffices to show that 
one of the boundary components of the minimal annulus is rotationally symmetric. We 
invite the readers who desire more information on Fraser and Li’s conjecture to consult 
the recent excellent surveys by Li [13] and Wang and Xia [18] and references therein. See 
also Fraser and Schoen [7] for a very deep characterization of the critical catenoid.

The rest of this paper is organized as follows. In section 2 we give some properties of 
the Legendrian boundary and contact angle. Main results of this paper and their proofs 
are given in section 3.

2. Properties of the Legendrian boundary and contact angle

Let x : Σn −→ B2n be an immersed Lagrangian submanifold with boundary ∂Σn on 
the unit round sphere S2n−1. Let ν be the unit outward normal vector field of ∂Σn ↪→ Σn. 
Since Σn is a Lagrangian submanifold of B2n, on the boundary we have the following 
orthogonal decomposition

TB2n|∂Σn =TΣn|∂Σn ⊕ T⊥Σn|∂Σn

=TΣn|∂Σn ⊕ JTΣn|∂Σn

=T∂Σn ⊕ JT∂Σn ⊕ span {ν, Jν} .

Notice that

TB2n|∂Σn =TS2n−1|∂Σn ⊕ span {x}

=T∂Σn ⊕ T⊥ (∂Σn ↪→ S2n−1)⊕ span {x} .

Therefore ∂Σn is a Legendrian submanifold of S2n−1 if and only if

T⊥ (∂Σn ↪→ S2n−1) = JT∂Σn ⊕ span {Jx} ,

if and only if

span {ν, Jν} = span {x, Jx} ,
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which is equivalent to that

ν = sin θx + cos θJx, (2.1)

where θ : ∂Σn −→ [0, π) is a smooth function. The angle θ is called a contact angle.
Let B, BΣ and B∂ be the second fundamental form of the isometric immersion 

Σn ↪→ B2n, ∂Σn ↪→ Σn and ∂Σn ↪→ S2n−1 respectively. Let H, HΣ and H∂ be the mean 
curvature vector of the isometric immersion Σn ↪→ B2n, ∂Σn ↪→ Σn and ∂Σn ↪→ S2n−1

respectively. Finally, let ∇̄, ∇ and ∇∂ be the Levi-Civita connection on B2n, Σn and ∂Σn

respectively.

Lemma 2.1. For all X, Y, Z ∈ T∂Σn,

BΣ (X,Y ) = − sin θ 〈X,Y 〉 ν, (2.2)

〈B (X,Y ) , Jν〉 =cos θ 〈X,Y 〉 , (2.3)

〈B (X,Y ) , JZ〉 =
〈
B∂ (X,Y ) , JZ

〉
. (2.4)

Moreover,

∇∂θ = JB (ν, ν) − 〈JB (ν, ν) , ν〉 ν. (2.5)

Proof. On the one hand, the isometric immersion ∂Σn ↪→ Σn ↪→ B2n implies

∇̄XY = ∇∂
XY + BΣ (X,Y ) + B (X,Y ) .

On the other hand, the isometric immersion ∂Σn ↪→ S2n−1 ↪→ B2n gives

∇̄XY = ∇∂
XY + B∂ (X,Y ) − 〈X,Y 〉x.

Thus

BΣ (X,Y ) + B (X,Y ) = B∂ (X,Y ) − 〈X,Y 〉x.

The boundary condition (2.1) gives

BΣ (X,Y ) = − sin θ 〈X,Y 〉 ν,
〈B (X,Y ) , Jν〉 =cos θ 〈X,Y 〉 ,
〈B (X,Y ) , JZ〉 =

〈
B∂ (X,Y ) , JZ

〉
.

Finally, direct calculation yields

〈B (X, ν) , Jν〉 =
〈
∇̄Xν, Jν

〉
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= 〈−X(θ)Jν + sin θX + cos θJX, Jν〉
= −X(θ).

Hence

∇∂θ = JB (ν, ν) − 〈JB (ν, ν) , ν〉 ν. �
Define one forms η on Σn and η∂ on ∂Σn by

η = ιHω|∂Σn , η∂ = ιH∂ω|∂Σn ,

where ω is the standard Kähler form on Cn, and ιX stands for the interior multipli-
cation by the tangent vector X, i.e., for k-form ξ and tangent vectors X1, . . . , Xk−1, 
(ιXξ) (X1, . . . , Xk−1) = ξ(X, X1, . . . , Xk−1). The one forms η and η∂ are called the 
Maslov form of the Lagrangian immersion Σn ↪→ B2n and the Legendrian immersion 
∂Σn ↪→ S2n−1 respectively. Equality (2.3) implies that

ινη = −〈B (ν, ν) , Jν〉 − (n− 1) cos θ. (2.6)

Equalities (2.4) and (2.5) yield

η|∂Σn = η∂ + dθ. (2.7)

By (2.7) we obtain the following very important observation.

Lemma 2.2. If Σn is a minimal Lagrangian submanifold in B2n with Legendrian capillary 
boundary, then ∂Σn is a minimal Legendrian submanifold in S2n−1.

3. Main results and proofs

In this section, we assume

x : Σ −→ B4

is a minimal Lagrangian surface with Legendrian capillary boundary on S3, i.e., the 
contact angle θ is a local constant. Then by Lemma 2.2 each component of ∂Σ is a 
Legendrian geodesic curve and hence a Legendrian great circle in S3. When restricted 
on ∂Σ, we have from (2.2), (2.5) and (2.6) that

κg = sin θ, B (ν, ν) = − cos θJν. (3.1)

Here κg is the geodesic curvature of the curve ∂Σ in Σ. Let z be local conformal coordi-
nates on Σ and consider the cubic form Q on Σ defined by (cf. [2])
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Q = 〈B (∂z, ∂z) , J∂z〉 ( dz)3 .

Since Σ is minimal, we know that Q is holomorphic. We have

Theorem 3.1. Let Σ be a minimal Lagrangian surface in B4 with Legendrian free boundary 
on S3. Then Σ is an equatorial plane disk.

Proof. If Σ is a Lagrangian surface with Legendrian free boundary, i.e., θ = π
2 , when 

restricted on ∂Σ, by (3.1) we have

κg = 1, B|∂Σ = 0.

Hence Q = 0 along the boundary ∂Σ, which implies that Q = 0 in Σ. Consequently, Σ
is totally geodesic in B4. Applying the Gauss-Bonnet formula we have

2π [2(1 − γ) − r] = 2πχ (Σ) =
∫
Σ

κ +
∫
∂Σ

κg =
∫
∂Σ

= 2πr,

where κ is the Gauss curvature of Σ, γ is the genus of Σ and r the numbers of the 
components of ∂Σ. Thus

γ + r = 1.

Consequently, γ = 0 and r = 1. Therefore Σ is a topological disk and is an equatorial 
plane disk according to Li, Wang and Weng’s result (Theorem 1.1). �

In particular, we have proved the following.

Corollary 3.2. There is no minimal Lagrangian annulus in B4 with Legendrian free bound-
ary on S3.

Next we will prove Conjecture 1 in the introduction. Before that, let us recall the 
example of Lagrangian catenoids and give some detailed descriptions on them, which 
will be helpful to understand our proofs presented below.

Example 3.1 (Lagrangian catenoids). We identify a real vector 
(
x1, x2, y1, y2) ∈ R4 as a 

complex vector 
(
z1, z2) =

(
x1 +

√
−1y1, x2 +

√
−1y2) ∈ C2. The Lagrangian catenoids 

in R4 can be identified as the holomorphic curve Σλ in C2, with respect to the standard 
Kähler form 

√
−1
2
∑2

k=1 dzk ∧ dz̄k, given by

Σλ =
{(

z,
λ

z

)
: z ∈ C \ {0}

}
,



8 Y. Luo, L. Sun / Advances in Mathematics 393 (2021) 108124
where λ ∈ R \ {0}. Let Ω = dz1 ∧ dz2 be the holomorphic symplectic form on C2. Then

Ω|Σλ
= 0.

Hence Σλ is a Lagrangian surface in C2 with respect to the Kähler form ReΩ (or ImΩ). 
Notice that the complex structure J associated with the Kähler form ReΩ = dx1∧ dx2−
dy1 ∧ dy2 is

J
(
x1, x2, y1, y2) =

(
−x2, x1, y2,−y1) .

Let z = re
√
−1φ where (r, φ) is the polar coordinates. Then

Σλ =
{(

r cosφ, λ
r

cosφ, r sinφ,−λ

r
sinφ

)
: r > 0, 0 ≤ φ < 2π.

}

Set

X(r, φ) =
(
r cosφ, λ

r
cosφ, r sinφ,−λ

r
sinφ

)
.

The tangent bundle TΣλ is spanned by

Xr =
(

cosφ,− λ

r2 cosφ, sinφ,
λ

r2 sinφ

)
,

Xφ =
(
−r sinφ,−λ

r
sinφ, r cosφ,−λ

r
cosφ

)
,

and the normal bundle T⊥Σλ is spanned by

JXr =
(

λ

r2 cosφ, cosφ, λ
r2 sinφ,− sinφ

)
,

JXφ =
(
λ

r
sinφ,−r sinφ,−λ

r
cosφ,−r cosφ

)
.

One can check that

|Xr|2 −
1
r2 |Xφ|2 = 〈Xr, Xφ〉 = 0,

i.e., X is a conformal immersion. Since

Xrr =
(

0, 2λ
r3 cosφ, 0,−2λ

r3 sinφ

)
,

Xφφ =
(
−r cosφ,−λ

r
cosφ,−r sinφ,

λ

r
sinφ

)
,
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we get

B (Xr, Xr) = 2λ
r3 |Xr|2

JXr, B (Xφ, Xφ) = − 2λ
r |Xr|2

JXr.

In particular, Σλ is a minimal Lagrangian surface in R4.
Notice that

〈Xφ, JX〉 = 0.

If 0 < |λ| < 1
2 , then ∂

(
Σλ ∩ B4) = Σλ ∩ S3 has two components

S± :=
{(

r± cosφ, λ

r±
cosφ, r± sinφ,− λ

r±
sinφ

)
: 0 ≤ φ < 2π

}
,

where

r± =

√
1
2 ±

√
1
4 − λ2.

These two components are Legendrian. The unit outward normal vector field of S± ⊂
Σλ ∩ B4 is

ν± = ±
(
r± cosφ,− λ

r±
cosφ, r± sinφ,

λ

r±
sinφ

)

=
√

1 − 4λ2X ∓ 2λJX.

Thus, the contact angle θ± along the boundary S± satisfies

sin θ± =
√

1 − 4λ2, cos θ± = ∓2λ.

In summary, X is a conformal annulus minimal Lagrangian immersion from the annulus 
A = {(r, φ) : r− ≤ r ≤ r+, 0 ≤ φ < 2π} to the unit ball B4 with Legendrian capillary 
boundary on S3 with X(A) = Σλ (0 < |λ| < 1

2 ). Notice that the contact angle of 
Σλ (0 < |λ| < 1

2 ) can not be π2 .

We have

Theorem 3.3. Assume that Σ is an annulus type minimal Lagrangian surface in B4 with 
Legendrian capillary boundary on S3, then Σ must be congruent to one of the Lagrangian 
catenoids Σλ (0 < |λ| < 1

2 ).

Proof. Assume that Σ is given by a conformal minimal immersion X from an annulus

A = {(r, φ) : r− ≤ r ≤ r+, 0 ≤ φ < 2π} ⊂ R2



10 Y. Luo, L. Sun / Advances in Mathematics 393 (2021) 108124
for some r± > 0, to B4, where we use polar coordinates (r, φ) on A. Denote by

S± := {X(r±, φ) : 0 ≤ φ < 2π}

the boundary of Σ. Then

z3 〈B (∂z, ∂z) , J∂z〉 = 1
2r

3
(
〈B (∂r, ∂r) , J∂r〉 −

√
−1
r3 〈B (∂φ, ∂φ) , J∂φ〉

)

is holomorphic in Σ. The imaginary part of z3 〈B (∂z, ∂z) , J∂z〉 vanishes on ∂Σ and 
hence z3 〈B (∂z, ∂z) , J∂z〉 vanishes on Σ. Therefore this holomorphic function must be a 
constant, which can not be zero (cf. Theorem 3.1). Consequently, there is a nonzero real 
constant c such that

B (∂r, ∂r) = c

|∂r|2 r3
J∂r.

When restricted on ∂Σ = S+ ∪ S−, according to (3.1), we have

c = ∓r3
± |∂r|3 cos θ±.

By Lemma 2.2 we see that both S± are Legendrian geodesics, and hence are Legendrian 
great circles on S3. Note that by the conformality of the immersion X we have r+ |∂r| =
|∂θ| on S+. Since S+ is a geodesic with length 2π, we see that |∂θ| = 1. Consequently

c = − cos θ+.

Similarly, we have c = cos θ−. Therefore

cos θ+ + cos θ− = 0, sin θ+ = sin θ−.

Let λ ∈ (−1/2, 0) ∪ (0, 1/2) be the unique real number determined by

sin θ± =
√

1 − 4λ2, cos θ± = ∓2λ.

Since X is minimal we have

ΔgX = 0,

where g = e2u(dr2+r2dφ2) is a conformal metric induced on X(A). Let Δ0 be the metric 
on the flat annulus A, then

Δ0X = 0. (3.2)
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Since both S± are Legendrian great circles on S3, there exist unit vectors �a±, �b± ∈ R4

with 
〈
�a±,�b±

〉
=
〈
�a±, J�b±

〉
= 0, such that

S± = �a± cosφ +�b± sinφ. (3.3)

Then by the uniqueness of solutions to Laplace’s equation (3.2) with the Dirichlet bound-
ary conditions (3.3), we have

X = X(r, φ) =
(
�ar + λ�b

r

)
cosφ +

(
�cr − λ�d

r

)
sinφ,

where �a, �b, �c, �d ∈ R4 are uniquely determined by θ±, r± and �a±, �b±. This formula tells 
us that Σ is a minimal Lagrangian surface of C2 foliated by circles and one can follow 
Castro and Urbano [3] to show that it is a part of Lagrangian catenoid. Here we would
like to provide an elementary proof. Direct computations show that

Xr =
(
�a− λ�b

r2

)
cosφ +

(
�c + λ�d

r2

)
sinφ,

Xφ = −
(
�ar + λ�b

r

)
sinφ +

(
�cr − λ�d

r

)
cosφ.

Thus

|Xr|2 −
1
r2 |Xφ|2 =

⎛
⎝
∣∣∣∣∣�a− λ�b

r2

∣∣∣∣∣
2

−
∣∣∣∣∣�c− λ�d

r2

∣∣∣∣∣
2
⎞
⎠ cos2 φ +

⎛
⎝
∣∣∣∣∣�c + λ�d

r2

∣∣∣∣∣
2

−
∣∣∣∣∣�a + λ�b

r2

∣∣∣∣∣
2
⎞
⎠ sin2 φ

+ 2
(〈

�a− λ�b

r2 ,�c + λ�d

r2

〉
+
〈
�a + λ�b

r2 ,�c−
λ�d

r2

〉)
sinφ cosφ.

It follows from |Xr|2 − 1
r2 |Xφ|2 = 0 that

|�a| = |�c| ,
∣∣∣�b∣∣∣ = ∣∣∣�d∣∣∣ , 〈

�a,�b
〉

=
〈
�c, �d
〉
, 〈�a,�c〉 = 0,

〈
�b, �d
〉

= 0. (3.4)

Then by (3.4)

〈
Xr,

1
r
Xφ

〉
=
〈
�a− λ�b

r2 ,�c−
λ�d

r2

〉
cos2 φ−

〈
�c + λ�d

r2 ,�a + λ�b

r2

〉
sin2 φ

+
(〈

�c + λ�d

r2 ,�c−
λ�d

r2

〉
−
〈
�a− λ�b

r2 ,�a + λ�b

r2

〉)
sinφ cosφ

= − λ

r2

(〈
�a, �d
〉

+
〈
�b,�c
〉)

,
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which implies from 
〈
Xr,

1
rXφ

〉
= 0 that

〈
�a, �d
〉

+
〈
�b,�c
〉

= 0. (3.5)

Moreover

|X|2 =

∣∣∣∣∣�ar + λ�b

r

∣∣∣∣∣
2

cos2 φ +

∣∣∣∣∣�cr − λ�d

r

∣∣∣∣∣
2

sin2 φ + 2
〈
�ar + λ�b

r
,�cr − λ�d

r

〉
sinφ cosφ.

When restricted on the boundary S± where r = r±, we have |X| = 1, together with (3.4)
and (3.5) we get

|�a|2 r2
± +

λ2
∣∣∣�b∣∣∣2
r2
±

= 1, (3.6)

〈
�a, �d
〉

=
〈
�b,�c
〉

=
〈
�a,�b
〉

=
〈
�c, �d
〉

= 0. (3.7)

In addition, since

r 〈Xr, X〉 = |�a|2 r2 −
λ2
∣∣∣�b∣∣∣2
r2 ,

when restricted on the boundary S± where r = r± we have

|�a|2 r2
± −

λ2
∣∣∣�b∣∣∣2
r2
±

= sin θ±. (3.8)

By (3.6) and (3.8), recall that sin θ± =
√

1 − 4λ2, we obtain that

|�a|
∣∣∣�b∣∣∣ = 1.

Now denote η = |�a| > 0, by (3.4), (3.7) and (3.8) we have

|�a| = |�c| = η,
∣∣∣�b∣∣∣ = ∣∣∣�d∣∣∣ = 1

η
,

〈
�a, �d
〉

= 〈�a,�c〉 =
〈
�a,�b
〉

=
〈
�b,�c
〉

=
〈
�b, �d
〉

=
〈
�c, �d
〉

= 0. (3.9)

Moreover,
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〈
Xr,

1
r
JXφ

〉
=
〈
�a− λ�b

r2 , J�c−
Jλ�d

r2

〉
cos2 φ−

〈
�c + λ�d

r2 , J�a + Jλ�b

r2

〉
sin2 φ

+
(〈

�c + λ�d

r2 , J�c−
Jλ�d

r2

〉
−
〈
�a− λ�b

r2 , J�a + Jλ�b

r2

〉)
sinφ cosφ.

Therefore, by 
〈
Xr,

1
rJXφ

〉
= 0 we obtain

〈�a, J�c〉 =
〈
�b, J �d

〉
= 0,

〈
�a, J �d

〉
+
〈
�b, J�c

〉
= 0,

〈
�a, J�b

〉
+
〈
�c, J �d

〉
= 0. (3.10)

Thus by (3.10) we have

〈
1
r
X,

1
r
JXφ

〉
=
〈
�a + λ�b

r2 , J�c−
Jλ�d

r2

〉
cos2 φ−

〈
�c− λ�d

r2 , J�a + Jλ�b

r2

〉
sin2 φ

+
(〈

�c− λ�d

r2 , J�c−
Jλ�d

r2

〉
−
〈
�a + λ�b

r2 , J�a + Jλ�b

r2

〉)
sinφ cosφ

=2λ
r2

〈
�b, J�c

〉
,

which implies from 
〈1
rX, 1

rJXφ

〉
= 0 on ∂Σ and (3.10) that

〈
�a, J �d

〉
=
〈
�b, J�c

〉
= 0.

In addition,

r 〈Xr, JX〉 = 2λ
〈
�a, J�b

〉
.

When restricted on the boundary r = r±, since

r 〈Xr, JX〉 = cos θ± = ∓2λ,

we conclude that
〈
�a, J�b

〉
= −1. (3.11)

Therefore, by (3.9), (3.10) and (3.11), the real metric O =
(
�a �b �c �d

)
satisfies

OTO =

⎛
⎜⎜⎝

η2 0 0 0
0 1

η2 0 0
0 0 η2 0
0 0 0 1

η2

⎞
⎟⎟⎠ , OTJO = J =

⎛
⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ .
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Set

Q =

⎛
⎜⎜⎝

η 0 0 0
0 1

η 0 0
0 0 η 0
0 0 0 1

η

⎞
⎟⎟⎠

and let P = OQ, then we see that

PTP = Id, PTJP = J,

hence P is a rigidity motion of R4 which preserves the complex structure J .
Finally, since Σλ is invariant under the transformation Q and Σ = O(Σλ) = OQ(Σλ) =

P (Σλ) (0 < |λ| < 1
2 ), we conclude that Σ is congruent to Σλ (0 < |λ| < 1

2 ). This 
completes the proof of Theorem 3.3. �
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