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Abstract
In this paper, we continue to consider Willmore Legendrian surfaces and csL Willmore 
surfaces in �5 , notions introduced by Luo (Calc Var Partial Differ Equ 56, Art. 86, 19, 
2017. https ://doi.org/10.1007/s0052 6-017-1183-z). We will prove that every complete 
Willmore Legendrian surface in �5 is minimal and find nontrivial examples of csL Will-
more surfaces in �5.
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1 Introduction

Let � be a Riemann surface, (Mn, g) = �
n or ℝn(n ≥ 3) the unit sphere or the Euclidean 

space with standard metrics and f an immersion from � to M. Let B be the second funda-
mental form of f with respect to the induced metric, H the mean curvature vector field of f 
defined by

�M the Gauss curvature of df (T�) with respect to the ambient metric g and d�f  the area 
element on f (�) . The Willmore functional of the immersion f is then defined by

H = trB,

W(f ) = ∫�

(
1

4
|H|2 + �M

)
d�f ,
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For a smooth and compactly supported variation f ∶ � × I ↦ M with � = �tf  , we 
have the following first variational formula (cf. [22, 23])

with ���⃗W(f ) =
∑n

𝛼=3
���⃗W(f )𝛼e𝛼 , where {e� ∶ 3 ≤ � ≤ n} is a local orthonormal frame of the 

normal bundle of f (�) in M and

where h�
ij
 is the component of B and H� is the trace of 

(
h�
ij

)
.

A smooth immersion f ∶ � ↦ M is called a Willmore immersion, if it is a critical 
point of the Willmore functional W. In other words, f is a Willmore immersion if and 
only if it satisfies

When (M, g) = ℝ
3 , Willmore [25] proved that the Willmore energy of closed sur-

faces is larger than or equal to 4� and equality holds only for round spheres. When � 
is a torus, Willmore conjectured that the minimum is 2�2 and it is attained only by the 
Clifford torus, up to a conformal transformation of ℝ3 [6, 24], which was verified by 
Marques and Neves in [13]. When (M, g) = ℝ

n , Simon [20], combined with the work 
of Bauer and Kuwert [1], proved the existence of an embedded surface which mini-
mizes the Willmore functional among closed surfaces of prescribed genus. Motivated 
by these mentioned papers, Minicozzi [14] proved the existence of an embedded torus 
which minimizes the Willmore functional in a smaller class of Lagrangian tori in ℝ4 . In 
the same paper, Minicozzi conjectured that the Clifford torus minimizes the Willmore 
functional in its Hamiltonian isotropic class, which he verified has a close relationship 
with Oh’s conjecture [17, 18]. We should also mention that before Minicozzi, Castro 
and Urbano proved that the Whitney sphere in ℝ4 is the only minimizer for the Willmore 
functional among closed Lagrangian sphere. This result was further generalized by Cas-
tro and Urbano in [4] where they proved that the Whitney sphere is the only closed 
Willmore Lagrangian sphere (a Lagrangian sphere which is also a Willmore surface) in 
ℝ

4 . Examples of Willmore Lagrangian tori (Lagrangian tori which also are Willmore 
surfaces) in ℝ4 were constructed by Pinkall [19] and Castro and Urbano [5]. Motivated 
by these works, Luo and Wang [11] considered the variation in the Willmore functional 
among Lagrangian surfaces in ℝ4 or variation in a Lagrangian surface of the Willmore 
functional among its Hamiltonian isotropic class in ℝ4 , whose critical points are called 
LW or HW surfaces, respectively. We should also mention that Willmore-type func-
tional of Lagrangian surfaces in ℂℙ2 were studied by Montiel and Urbano [16] and Ma 
et al. [12].

Inspired by the study of the Willmore functional for Lagrangian surfaces in ℝ4 , Luo 
[9] naturally considered the Willmore functional of Legendrian surfaces in �5.

Definition 1.1 A Willmore and Legendrian surface in �5 is called a Willmore Legend-
rian surface.

d

dt
W(f ) = ∫𝛴

⟨
���⃗W(f ),𝜙

⟩
d𝜇f ,

���⃗W(f )𝛼 =
1

2

(
ΔH𝛼 +

∑
i,j,𝛽

h𝛼
ij
h
𝛽

ij
H𝛽 − 2|H|2H𝛼

)
, 3 ≤ 𝛼 ≤ n,

(1.1)ΔH� +
∑
i,j,�

h�
ij
h
�

ij
H� − 2|H|2H� = 0, 3 ≤ � ≤ n.
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Definition 1.2 A Legendrian surface in �5 is called a contact stationary Legendrian 
Willmore surface (in short, a csL Willmore surface) if it is a critical point of the Willmore 
functional under contact deformations.

Luo [9] proved that Willmore Legendrian surfaces in �5 are csL surfaces (see Defini-
tion 2.1). In this paper, we continue to study Willmore Legendrian surfaces and csL Willmore 
surfaces in �5 . Surprisingly, we will prove that every complete Willmore Legendrian surface 
in �5 must be a minimal surface (Theorem 2.5). We also find nontrivial examples of csL Will-
more surfaces from csL surfaces in �5 for the first time, by exploring relationships between 
them (Proposition 3.1).

The method here we used to find nontrivial csL Willmore surfaces in �5 in Sect.  3 
should also be useful in discovering nontrivial HW surfaces in ℝ4 introduced by Luo and 
Wang in [11]. We will consider this problem in the future.

2  Willmore Legendrian surfaces in �5

In this section, we will prove that every complete Willmore Legendrian surface in �5 is 
minimal. Firstly, we briefly record several facts about Legendrian surfaces in �5 . We refer 
the reader to consult [2] for more materials about the contact geometry.

Let �5 , the five-dimensional unit sphere, be the standard Sasakian Einstein manifold 
with contact one form � , almost complex structure J, Reed field � and canonical metric g. 
Let � be a closed surface of 𝕊5 ⊂ ℂ

3 . We say that � is Legendrian if

where F ∶ � ⟶ �
5 is the position vector and T�, T�� are tangent and normal bundles of 

� , respectively. We say that � is a minimal Legendrian surface of �5 if � is a minimal and 
Legendrian surface of �5 . Define

The Weingarten equation implies that

Moreover, by definition, one can check that � is a three-order symmetric tensor, i.e.,

The Gauss equation, Codazzi equation and Ricci equation become

where 
{
ei
}
 is an orthonormal basis of T� . The Codazzi equation implies

, i.e., ∇� is a fourth-order symmetric tensor.

JT𝛴 ⊂ T𝜈𝛴, JF ∈ 𝛤 (T𝜈𝛴)

�(X, Y , Z) ∶= ⟨�(X, Y), JZ⟩, ∀X, Y , Z ∈ T�.

�(X, Y , Z) = �(Y ,X, Z).

(2.1)�(X, Y , Z) = �(Y ,X, Z) = �(X, Z, Y).

(2.2)

R(X, Y , Z,W) = ⟨X, Z⟩⟨Y ,W⟩ − ⟨X,W⟩⟨Y , Z⟩
+ 𝜎

�
X, Z, ei

�
𝜎
�
Y ,W, ei

�
− 𝜎

�
X,W, ei

�
𝜎
�
Y , Z, ei

�
,�

∇X𝜎
�
(Y , Z,W) =

�
∇Y𝜎

�
(X, Z,W),

R⊥(X, Y , JZ, JW) = R(X, Y , Z,W),

(2.3)
(
∇X�

)
(Y , Z,W) =

(
∇Y�

)
(X, Z,W) =

(
∇X�

)
(Z, Y ,W) =

(
∇X�

)
(Y ,W, Z),



180 Annals of Global Analysis and Geometry (2020) 58:177–189

1 3

Recall that

Definition 2.1 � is a csL surface in �5 if it is a critical point of the volume functional 
among Legendrian surfaces.

CsL surfaces in �5 satisfy the following Euler–Lagrange equation [3, 7]:

It is obvious that � is csL in �5 when � is minimal. The following observation is very 
important for the study of csL surfaces.

Lemma 2.1 � is csL in �5 iff JH is a harmonic vector field.

By using the Bochner formula for harmonic vector fields (cf. [8]), we get

Lemma 2.2 If � is csL in �5 , then

From Lemma 2.2, it is easy to see that we have

Lemma 2.3 If 𝛴 ⊂ �
5 is csL and non-minimal, then the zero set of H is isolated and

provided H ≠ 0 , where � is the Gauss curvature of �.

We then prove that every complete Willmore Legendrian surface in �5 must be a 
minimal surface. Firstly, we rewrite the Willmore operator acting on Legendrian sur-
faces, i.e., we prove the following

Proposition 2.4 Assume that � is a Legendrian surface in �5 , , then its Willmore opera-
tor can be written as

In particular, the Euler–Lagrange equation of Willmore Legendrian surfaces in �5 is

Proof Let {�1, �2,�} be a local orthonormal frames of the normal bundle of � , then the 
Willmore equation (1.1) can be rewritten as

Note that by (2.8) in [9], we have

div (JH) = 0.

1

2
Δ|H|2 = |∇(JH)|2 + Ric(JH, JH).

Δ log |H| = �

�(�) =
1

2

{
−J∇ div (JH) + B(JH, JH) −

1

2
|H|2H − 2 div (JH)�

}
.

(2.4)−J∇ div (JH) + B(JH, JH) −
1

2
|H|2H − 2 div (JH)� = 0.

Δ�H +
�
�

⟨A� ,AH⟩�� − 1

2
�H�2H = 0.
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for X, Y ∈ � (T�) , where ∇̄ denotes the covariant derivative of �5 . Choose a local ortho-
normal frame field around p with ∇ei

ej|p = 0 , then

and

where in the last equality we used (2.7) in [9]. Therefore, we obtain

which implies that � satisfies the following equation

In addition, by [9, Lemma 2.9], the dual one form of JH is closed; thus, by the Ricci iden-
tity we have

The proposition is then a consequence of the following Claim together with above two 
identities.   ◻

Claim 
Proof The first equation is obvious by the Gauss equation (2.2). The second equation can 
be proved by the Gauss equation (2.2) and the tri-symmetry of the tensor � (see (2.1)). To 
be precise, for every tangent vector field Z ∈ T� we have

∇𝜈
X
(JY) = (∇̄X(JY))

𝜈

= ((∇̄XJ)Y + J∇̄XY)
𝜈

= J∇XY + g(X, Y)�

J∇ei
(JH)

= ∇�
ei
(J(JH)) − g(ei, JH)�

= −∇�
ei
H − g(ei, JH)�

J∇ei
(∇ei

(JH)) =∇𝜈
ei
(J∇ei

(JH)) − g(ei,∇ei
JH)�

=∇𝜈
ei
(−∇𝜈

ei
H − g(ei, JH)�) − g(ei,∇ei

JH)�

= − ∇𝜈
ei
∇𝜈

ei
H − 2g(ei,∇ei

(JH)� − g(ei, JH)
(
∇̄ei

�
)𝜈

= − ∇𝜈
ei
∇𝜈

ei
H − 2g(ei,∇ei

(JH)� − g(H, Jei)Jei,

Δ�H = −JΔ(JH) − H − 2 div (JH)�,

−JΔ(JH) +
∑
�

⟨
A� ,AH

⟩
�� −

1

2

(
2 + |H|2)H − 2 div (JH)� = 0.

Δ(JH) = ∇ div (JH) + �JH.

2� = 2 + |H|2 − |B|2,
∑
�

⟨
A� ,AH

⟩
�� −

1

2
|B|2H = B(JH, JH) −

1

2
|H|2H.
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This completes the proof of the second equation.   ◻

Now we are in position to prove the following

Theorem 2.5 Every complete Willmore Legendrian surface in �5 is a minimal surface.

Proof We prove by a contradiction argument. Assume that � is a complete Willmore Leg-
endrian surface in �5 which is not a minimal surface. If H ≠ 0 , then let 

{
e1 =

JH

|H| , e2
}

 be a 
local orthonormal frame field of T� . From (2.4), we have

which also implies that

Then, by the Gauss equation (2.2) we have

Since � is a Willmore Legendrian surface, from (2.4) we see that div (JH) = 0 . By 
Lemma  2.3, the minimal points of � are discrete and so the Gauss curvature of � 
equals one everywhere on � ; therefore, � is compact by Bonnet-Myers theorem. Apply 
Lemma 2.2 to obtain that on �

⟨B(JH, JH), JZ⟩ −�
�

⟨A� ,AH⟩⟨�� , JZ⟩

= −⟨B(Z, JH),H⟩ −�
i,j

⟨B(ei, ej), JZ⟩⟨B(ei, ej),H⟩

=
�
i,j

⟨B(Z, ej), Jei⟩⟨B(JH, ej), ei⟩ − ⟨B(Z, JH),H⟩

=
�
j

⟨B(Z, ej),B(JH, ej)⟩ − ⟨B(Z, JH),H⟩

= Ric(Z, JH) − ⟨Z, JH⟩
= (� − 1)⟨Z, JH⟩
=

1

2

��H�2 − �B�2�⟨Z, JH⟩
=

1

2

��B�2 − �H�2�⟨H, JZ⟩.

B(e1, e1) = −
1

2
|H|Je1,

B(e2, e2) = −
1

2
|H|Je1, h2

11
= 0.

� =1 + ⟨B(e1, e1),B(e2, e2)⟩ − ��B(e1, e2)��2

=1 +
1

4
�H�2 − ���h

1
12

���
2

−
���h

2
12

���
2

=1 +
1

4
�H�2 − ���h

1
22

���
2

=1.

1

2
Δ|H|2 = |∇(JH)|2 + |H|2.
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Then, the maximum principle implies that H ≡ 0 , which is a contradiction. Therefore, � is 
a minimal Legendrian surface in �5 .   ◻

3  Examples of csL Willmore surfaces in �5

From the definition, we see that complete Willmore Legendrian surfaces, which are mini-
mal surfaces by Theorem 2.5 in the last section, are trivial examples of csL Willmore sur-
faces in �5 . Thus, it is very natural and important to find nonminimal csL Willmore sur-
faces in �5 . This will be done in this section by analyzing a very close relationship between 
csL Willmore surfaces and csL surfaces in �5.

Assume that � is a csL Willmore surface in �5 , then since the variation vector field on 
� under Legendrian deformations can be written as J∇u + 1

2
u� for smooth function u on 

� (cf. [21, Lemma 3.1]), we have

where in the last equality we used 
⟨
���⃗W(𝛴),�

⟩
= −2 div (JH) , by Proposition 2.4. There-

fore, � satisfies the following Euler–Lagrange equation:

Remark 3.1 Note that the coefficient of the Euler–Lagrange equation (3.1) for csL Will-
more surfaces in �5 is slightly different with [9, equation (1.7)]. That is because here we 
use the notation H = trB , whereas in [9] we defined H =

1

2
trB.

Then, by (2.4), � satisfies the following equation.

In addition, by the four-symmetric of 
(
�ijk,l

)
 [see (2.3)], a direct computation shows

Therefore, � satisfies the following equation

Therefore, we have

0 =∫𝛴

�
���⃗W(𝛴), J∇u +

1

2
u�

�
d𝜇𝛴

=∫𝛴

⟨���⃗W(𝛴), J∇u⟩d𝛴 + ∫𝛴

�
���⃗W(𝛴),

1

2
u�

�
d𝜇𝛴

=∫𝛴

div
�
J���⃗W(𝛴) − 2JH

�
u d𝜇𝛴 ,

(3.1)div
(
J���⃗W(𝛴) − 2JH

)
= 0.

div
(
∇ div (JH) + JB(JH, JH) −

1

2
|H|2JH − 4JH

)
= 0.

div (JB(JH, JH)) = 2 tr ⟨B(⋅,∇
⋅
(JH)),H⟩ + 1

2
∇JH�H�2.

Δ div (JH) + 2 tr ⟨B(⋅,∇
⋅
(JH)),H⟩ − 1

2
�H�2 div (JH) − 4 div (JH) = 0.
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Proposition 3.1 Assume that � is a csL surface in �5 and tr ⟨B(⋅,∇
⋅
(JH)),H⟩ = 0 , then 

� is a csL Willmore surface.

With the aid of Proposition 3.1, we can find the following examples of csL Willmore 
surfaces from csL surfaces in �5 . Firstly, according to Proposition 3.1, all closed Legend-
rian surfaces with parallel tangent vector field JH, which are exactly minimal surfaces or 
the Calabi tori (cf. [10, Proposition 3.2]), are csL Willmore surfaces. For reader’s conveni-
ence, we give some detailed computations as follows.

Example 3.1 (Calabi tori) For every four nonzero real numbers r1, r2, r3, r4 with 
r2
1
+ r2

2
= r2

3
+ r2

4
= 1 , the Calabi torus � is a csL surface in �5 defined as follows.

Denote

then F(t, s) =
(
r1r3�1, r1r4�2, r2�3

)
 . Since

the induced metric in � is given by

Let E1 =
�F

�t
,E2 =

1

r1

�F

�s
 , then {E1,E2, �1 =

√
−1E1, �2 =

√
−1E2,� = −

√
−1F} is a local 

orthonormal frame of �5 such that {E1,E2} is a local orthonormal tangent frame and � is 
the Reeb field. A direct calculation yields

F ∶ �
1 × �

1
↦ �

5,

(t, s) ↦

�
r1r3 exp

�√
−1

�
r2

r1
t +

r4

r3
s

��
, r1r4 exp

�√
−1

�
r2

r1
t −

r3

r4
s

��
, r2 exp

�
−
√
−1

r1

r2
t

��
.

�1 = exp

�√
−1

�
r2

r1
t +

r4

r3
s

��
, �2 = exp

�√
−1

�
r2

r1
t −

r3

r4
s

��
, �3 = exp

�
−
√
−1

r1

r2
t

�
,

�F

�t
=
�√

−1r2r3�1,
√
−1r2r4�2,−

√
−1r1�3

�
,

�F

�s
=
�√

−1r1r4�1,−
√
−1r1r3�2, 0

�
,

g = dt2 + r2
1
ds2.
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Hence,

Thus,

Moreover, E1 and E2 are two parallel tangent vector field. It is obvious that � is a csL Will-
more surface.

Secondly, we give some examples that JH is not parallel. Mironov [15] constructed 
the following new csL surfaces in �5 . We will verify that Mironov’s examples are in fact 
csL Willmore surfaces.

Example 3.2 (Mironov’s examples [15]) Let F ∶ �2
↦ �

5 be an immersion. Then, F is a 
Legendrian immersion iff

Here, {x, y} is a local coordinates of � and ⟨, ⟩ stands for the Hermitian inner product in ℂ3 . 
Set

then

��1

�t
=

�
−
√
−1

r2
2
r3

r1
�1,−

√
−1

r2
2
r4

r1
�2,−

√
−1

r2
1

r2
�3

�
,

��1

�s
=

�
−
√
−1

r2r
2
3

r4
�1,

√
−1

r2r
2
4

r3
�2, 0

�
,

��2

�t
=

�
−
√
−1

r2r4

r1
�1,

√
−1

r2r3

r1
�2, 0

�
,

��2

�s
=

�
−
√
−1

r2
4

r3
�1,−

√
−1

r2
3

r4
�2, 0

�
,

��

�t
=
�
r2r3�1, r2r4�2,−r1�3

�
,

��

�s
=
�
r1r4�1,−r1r3�2, 0

�
.

A�1 = −ℜ⟨dF, d�1⟩ =
�
r2

r1
−

r1

r2

�
dt2 + r1r2ds

2,

A�2 = −ℜ⟨dF, d�2⟩ = 2r2dtds + r1

�
r4

r3
−

r3

r4

�
ds2,

A� = 0.

H =

(
2r2

r1
−

r1

r2

)
�1 +

1

r1

(
r4

r3
−

r3

r4

)
�2.

⟨Fx,F⟩ = ⟨Fy,F⟩ = 0.

G =

⎛⎜⎜⎝

F

Fx

Fy

⎞⎟⎟⎠
,
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where g is a real positive matrix which is the induce metric of � . There is a Hermitian 
matrix � such that

We compute

Hence,

which implies

Similarly,

The Lagrangian angle is then given by � = trℜ� . The above discussion implies that

Let a, b, c are three positive constants and consider the following immersion

where

GḠT =

⎛
⎜⎜⎝

1 0 0

0 ⟨Fx,Fx⟩ ⟨Fx,Fy⟩
0 ⟨Fy,Fx⟩ ⟨Fy,Fy⟩

⎞
⎟⎟⎠
∶=

�
1 0

0 g

�
,

G =

�
1 0

0 g1∕2

�
e
√
−1�.

GḠT
x
=

⎛
⎜⎜⎝

0 − ⟨Fx,Fx⟩ − ⟨Fx,Fy⟩
⟨Fx,Fx⟩ ⟨Fx,Fxx⟩ ⟨Fx,Fyx⟩
⟨Fy,Fx⟩ ⟨Fy,Fxx⟩ ⟨Fy,Fyx⟩

⎞
⎟⎟⎠

=

�
1 0

0
√
g

�
e
√
−1𝛩

�
e−

√
−1𝛩

�
x

�
1 0

0
√
g

�
+

�
1 0

0
√
g

��
0 0

0
�√

g
�
x

�
.

ℜ

�√
−1GḠT

x

�
= ℜ

√
−1

⎛
⎜⎜⎝

0 0 0

0 ⟨Fx,Fxx⟩ ⟨Fx,Fyx⟩
0 ⟨Fy,Fxx⟩ ⟨Fy,Fyx⟩

⎞
⎟⎟⎠

=

�
0 0

0 A
√
−1Fx

�

=

�
1 0

0
√
g

�
ℜ

�√
−1e

√
−1𝛩

�
e−

√
−1𝛩

�
x

��
1 0

0
√
g

�
,

�
0 0

0 g−1∕2A
√
−1Fxg1∕2

�
= ℜ

�√
−1e

√
−1�

�
e−

√
−1�

�
x

�
.

�
0 0

0 g−1∕2A
√
−1Fyg1∕2

�
= ℜ

�√
−1e

√
−1�

�
e−

√
−1�

�
y

�
.

J∇� = H.

F ∶�1 × �
1
↦ �

5,

(x, y) ↦
�
�(x)e

√
−1ay,�(x)e

√
−1by, � (x)e−

√
−1cy

�
,
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where

One can check that F is a Legendrian immersion. Denote � ∶= F
(
�
1 × �

1
)
 . Notice that

The induced metric g is given by

A strait forward calculation yields that

We get

�(x) =

√
c

a + c
sin x,

�(x) =

√
c

b + c
cos x,

� (x) =

√
a sin2 x

a + c
+

b cos2 x

b + c
=

√
ab + u(x)

(a + c)(b + c)
,

u(x) =
c(a + b + (b − a) cos(2x))

2
.

Fx =

��
c

a + c
cos xe

√
−1ay,−

�
c

b + c
sin xe

√
−1by,

−c(b − a) sin(2x)

2
√
(a + c)(b + c)(ab + u(x))

e−
√
−1cy

�
,

Fy =
�√

−1a�(x)e
√
−1ay,

√
−1b�(x)e

√
−1by,−

√
−1c� (x)e−

√
−1cy

�
.

g =

[
c cos2 x

a + c
+

c sin2 x

b + c
+

c2(b − a)2 sin2(2x)

4(a + c)(b + c)(ab + u(x))

]
dx2

+

[
a2 ×

c sin2 x

a + c
+ b2 ×

c cos2 x

b + c
+ c2

(
a sin2 x

a + c
+

b cos2 x

b + c

)]
dy2

=
u(x)

ab + u(x)
dx2 + u(x)dy2

∶= e2p(x)dx2 + e2q(x)dy2.

A
√
−1Fx = ℜ

�
0

√
−1⟨Fx,Fxy⟩

−
√
−1⟨Fxy,Fx⟩ 0

�
=

�
0 c

�
1 − e2p(x)

�
c
�
1 − e2p(x)

�
0

�
,

A
√
−1Fy = ℜ

�√
−1⟨Fx,Fyx⟩ 0

0
√
−1⟨Fy,Fyy⟩

�
=

�
c
�
1 − e2p(x)

�
0

0 (a + b − c)e2q(x) − abc

�
.
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Thus,

We get

and

In particular,

Hence, � is csL. Moreover,

Therefore, � is a csL Willmore surface in �5.

Acknowledgements Open access funding provided by Projekt DEAL. This work was partially supported 
by the NSFC of China (Nos. 11501421, 11801420, 11971358) and the Youth Talent Training Program of 
Wuhan University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

ℜ

�√
−1e

√
−1�

�
e−

√
−1�

�
x

�
=

⎛
⎜⎜⎜⎜⎜⎝

0 0 0

0 0
abc

u
√
ab + u

0
abc

u
√
ab + u

0

⎞
⎟⎟⎟⎟⎟⎠
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⎜⎜⎜⎝
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