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Abstract In this paper we study the properties of quasi-harmonic spheres from Rm,m > 2.
We show that if the universal covering Ñ of N admits a nonnegative strictly convex func-

tion ρ with the exponential growth condition ρ(y) ≤ C exp
(

1
4 d̃(y)

2/m
)

where d̃(y)

is the distance function on Ñ , then N does not admit a quasi-harmonic sphere, which
generalize Li-Zhu’s result (Calc Var Partial Diff Equ 37(3–4):441–460, 2010). We also
show that if u is a quasi-harmonic sphere, then the property that u is of finite energy
(
∫
Rm e(u)e−|x |2/4dx < ∞) is equivalent to the property that u satisfies the large energy

condition (limR→∞ Rme−R2/4 ∫
BR(0)

e(u)e−|x |2/4 dx = 0).

Mathematics Subject Classification 58E20 · 53C43

1 Introduction

Let Mm, Nn be two compact Riemannian manifolds of dimension m and n respectively. Let
u ∈ W 1,2(M, N ), the energy of u is defined by

E(u) = 1
2

∫

M
|du|2 d VolM .
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The critical points of the energy functional are called harmonic maps. Eells and Sampson [4]
introduce the heat flow and prove that, the heat flow has a global solution which subconverges
strongly to a harmonic map at time infinity if the sectional curvature of the target manifold is
non-positive. This result was generalized by Ding and Lin [3] to the case that the universal
covering of N admits a nonnegative strictly convex function with quadratic growth.

However, in general, the heat flow may produce singularities at a finite time (e.g. [1,2]).
Struwe divided singularities of the heat flow into two different types. One of this type is
associated to quasi-harmonic spheres (c.f. [9]).

Definition 1.1 Let m > 2. A quasi-harmonic sphere is a non-constant harmonic map from(
Rm, exp

(
− |x |2

2(m−2)

)
g0

)
to a Riemannian manifold, where g0 is the Euclidean metric in

Rm , i.e.,

τ (u) = 1
2
x · du, (1.1)

with finite energy ∫

Rm
e(u)e−|x |2/4dx < ∞, (1.2)

where
e(u) = 1

2
|du|2 .

Based on the work of Lin and Wang [9], we know that Liouville theorems for harmonic spheres
(harmonic maps from spheres) and quasi-harmonic spheres imply the global existence of the
heat flows. Li and Wang [6] proved that there are no non-constant quasi-harmonic spheres
with images in a regular ball. Li and Zhu [8] proved that, if the heat flow has a global solution
and there is no harmonic map from Sl to N for 2 ≤ l ≤ m − 1, then this flow subconverges
in C2 norm to a smooth harmonic map at infinity. Moreover, in the same paper, they also
proved that the heat flow exists globally provided that the universal covering Ñ of N admits
a strictly convex positive function ρ with polynomial growth, i.e.,

∇̃2ρ > 0, 0 < ρ(y) < C(1 + d̃(y, y0))
P , ∀y ∈ Ñ ,

for some y0 ∈ Ñ and some positive constants C, P . Here d̃ is the distance function on Ñ .
Li and Yang [7] generalized these results to the case of “quasi-harmonic sphere with large
energy condition” under the same assumption on ρ. The large energy condition is defined by

lim
R−→∞

Rme−R2/4
∫

BR(0)
e(u)e−|x |2/4 dx = 0. (1.3)

Our first main result is as follows.

Theorem 1.1 Suppose u satisfies (1.1), then the following three conditions are equivalent
to each other.

1. The large energy condition holds, i.e., (1.3) holds.
2.

∫

Rm
|ur |2 |x |4−m dx < ∞.

3. The total energy is finite, i.e., (1.2) holds.

123



A note on the nonexistence of quasi-harmonic spheres Page 3 of 13  151 

Remark 1.1 Li and Zhu [8] stated the following estimate for quasi-harmonic sphere,
∫

BR(0)
|du|2 dx ≤ CRm−2, ∀R > 0, (1.4)

where C is a constant independent of R. As a consequence, this condition (1.4)1 is equivalent
to (1.2) and is also equivalent to the following condition

∫

Rm
|du|2 |x |2−m−δ dx < ∞

for some or every δ > 0. In fact, one can get more, see Corollary 2.5.

Our second main result is that, Li-Zhu’s result holds, if the universal covering Ñ of N admits
a nonnegative strictly convex function ρ with the following exponential growth condition:
for some constant C ,

ρ(y) ≤ C exp
(

1
4
d̃(y)2/m

)
, ∀y ∈ Ñ . (1.5)

Here d̃(y) = d̃(y, y0) is the distance function on Ñ from some fixed point y0 ∈ Ñ . It is easy
to check that this assumption is weaker than the one in [8]. In appendix, we constructed a
strictly convex positive function on R3 which is of exponential growth.

Theorem 1.2 Suppose m ≥ 3 and there is a nonnegative strictly convex function ρ on the
universal covering of the target manifold N such that (1.5) holds. Then there is no non-
constant quasi-harmonic sphere u from Rm to N.

The authors would like to thank the referee for his/her careful reading of our paper and
the constructive and helpful comments.

2 Proof of Theorem 1.1

In this section, we derive some estimates and prove Theorem 1.1. Introduce

H(r) :=
∫

Sm−1

(|ur |2 − e(u)
)

dθ, ∀r > 0.

We begin with the following Lemma.

Lemma 2.1 Suppose u satisfies (1.1). Then

1. either

− R−2(m − 2)
∫

B√
2(m−2)

r2−m |ur |2 dx ≤ H(R) ≤ 0, ∀R > 0, (2.1)

2. or there exists R0 ≥ √
2(m − 2) such that

H(R) ≥ R2−2meR
2/2R2m−2

0 e−R2
0/2H(R0) > 0, ∀ R > R0. (2.2)

Here Sm−1 stands for the unit sphere in Rm centering at 0 and BR = BR(0).

1 We thank ZHU Xiangrong for pointing out this equivalent condition.
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Proof A direct computation gives (c.f. Lemma 3.3 in [8])

d
dr

∫

Sm−1

(|ur |2 − e(u)
)

dθ −
∫

Sm−1

(
2
r
e(u)+

( r
2

− m
r

)
|ur |2

)
dθ = 0, ∀r > 0.

(2.3)
According to this identity, we get

d
dr

∫

Sm−1

(|ur |2 − e(u)
)

dθ + 2
r

∫

Sm−1

(|ur |2 − e(u)
)

dθ =
(
r
2

− m − 2
r

) ∫

Sm−1
|ur |2 dθ .

From this formula, we know

d
dr

(
r2H(r)

)
= r2

(
r
2

− m − 2
r

) ∫

Sm−1
|ur |2 dθ . (2.4)

Thus, r2H(r) increases from
√

2(m − 2) to infinity, and decreases from 0 to
√

2(m − 2).
Setting C0 := √

2(m − 2), we get

r2H(r) ≥ C2
0 H(C0), ∀r > 0.

Again according to (2.3) we obtain

d
dr

∫

Sm−1

(|ur |2 − e(u)
)

dθ +
(

2(m − 1)
r

− r
) ∫

Sm−1

(|ur |2 − e(u)
)

dθ

=
(
r − 2(m − 2)

r

) ∫

Sm−1

(
e(u) − 1

2
|ur |2

)
dθ,

which implies

d
dr

(
r2m−2e−r2/2H(r)

)
= r2m−2e−r2/2

(
r − 2m − 4

r

) ∫

Sm−1

(
e(u) − 1

2
|ur |2

)
dθ .

(2.5)
Hence, r2m−2e−r2/2H(r) is increase from

√
2(m − 2) to infinity, and is decrease from 0 to√

2(m − 2). It is obvious that

r2m−2e−r2/2
∫

Sm−1

(|ur |2 − e(u)
)

dθ → 0, as r → 0.

Moreover,

d
dr

(
r2H(r)

)
≥ −(m − 2)r

∫

Sm−1
|ur |2 dθ,

which yields

R2H(R) ≥ −(m − 2)
∫

BR

r2−m |ur |2 dx, ∀R > 0.

Here we have used the fact

lim
r→0

r2H(r) = 0.

Therefore,

r2H(r) ≥ C2
0 H(C0) ≥ −(m − 2)

∫

BC0

r2−m |ur |2 dx, ∀r > 0.
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Now we can finish the proof of this Lemma. If we do not have (2.1), then there exists
R0 ≥ √

2(m − 2), such that
∫

{R0}×Sm−1

(|ur |2 − e(u)
)

dθ > 0,

then for every r > R0,

r2m−2e−r2/2H(r) ≥ R2m−2
0 e−R2

0/2H(R0) > 0,

which means that (2.2) holds. ⊓,

Remark 2.1 Suppose u satisfies (1.1), then

−R2H(R) ≤ (m − 2)
∫

B√
2(m−2)

r2−m |ur |2 dx, (2.6)

−R2m−2e−R2/2H(R) ≤ (m − 2)
∫

B√
2(m−2)

rm−2e−r2/2 |uθ |2
r2 dx, (2.7)

−Rme−R2/4H(R) ≤ (m − 2)
∫

B√
2(m−2)

e−r2/4e(u) dx, (2.8)

holds for all R > 0.

Proof The proof of (2.6) and (2.7) can be found in the proof of Lemma 2.1. The proof of
(2.8) can be proved similarly since (2.3) implies the following formula

d
dr

(
rme−r2/4H(r)

)
=

(
r
2

− m − 2
r

)
rme−r2/4

∫

Sm−1
e(u)dθ, ∀r ∈ (0,∞).

⊓,

Lemma 2.2 Suppose u satisfies (1.1) and

lim inf
R→∞

R2m−2e−R2/2
∫

{R}×Sm−1

(|ur |2 − e(u)
)

dθ > 0,

then

lim inf
R→∞

Rme−R2/4
∫

BR

(|ur |2 − e(u)
)
e−r2/4 dx > 0.

Proof A direct computation. ⊓,

Next, we prove the following energy estimate.

Proposition 2.3 Suppose u satisfies (1.1), then there is a constant C1 depending only on m
such that for every 0 ≤ δ ≤ 2, we have

∫

BR

r4−m−δ |ur |2 dx ≤ C1

∫

B2
√
m−2

r2−m |ur |2 dx + 4R2H(R)+, ∀R > 0.

Here f + = max { f, 0} .
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Proof It suffices to consider the case R > 2
√
(m − 2) and we start with the formula (2.4),

i.e.,

d
dr

(
r2H(r)

)
= r2

(
r
2

− m − 2
r

) ∫

Sm−1
|ur |2 dθ .

For every 0 < ρ < R, we have

R2H(R) − ρ2H(ρ) =
∫ R

ρ
r2

(
r
2

− m − 2
r

) ∫

Sm−1
|ur |2 dθ dr

=
∫

BR\Bρ

(
r
2

− m − 2
r

)
r3−m |ur |2 dx .

For
√

4(m − 2) ≤ ρ < R, we have
∫

BR\Bρ

r4−m |ur |2 dx ≤ 4R2H(R)+ − 4ρ2H(ρ),

which implies
∫

BR\B2
√
m−2

r4−m |ur |2 dx ≤4R2H(R)+ − 4
(

2
√
m − 2

)2
H

(
2
√
m − 2

)

≤4R2H(R)+ + 4(m − 2)
∫

B2
√
m−2

r2−m |ur |2 dx .

Here we have used (2.6). In particular, we get the desired estimate for δ = 0. In general
0 ≤ δ ≤ 2,
∫

BR

r4−m−δ |ur |2 dx =
∫

BR\B2
√
m−2

r4−m−δ |ur |2 dx +
∫

B2
√
m−2

r4−m−δ |ur |2 dx

≤
∫

BR\B2
√
m−2

r4−m |ur |2 dx +
(

2
√
m − 2

)2−δ
∫

B2
√
m−2

r2−m |ur |2 dx

≤ 8(m − 2)
∫

B2
√
m−2

r2−m |ur |2 dx + 4R2H(R)+.

⊓,

As a consequence, we have

Corollary 2.4 Suppose u satisfies (1.1). Then there is a constant C2 such that for every
0 < δ < 1,

δR−δ

∫

BR

r2−m+δe(u) dx ≤C2

∫

B2
√
m−2

r2−m |ur |2 dx + 4R2H(R)+, ∀R > 0.

In particular,

R2−m
∫

BR

e(u) dx ≤C2

∫

B2
√
m−2

r2−m |ur |2 dx + 4R2H(R)+, ∀R > 0. (2.9)
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Proof Since
∫

BR

r2−m+δe(u) dx = −
∫ R

0
r1+δH(r) dr +

∫

BR

r2−m+δ |ur |2 dx

≤ sup
0<r<R

(
−r2H(r)

)
×

∫ R

0
r δ−1 dr + Rδ

∫

BR

r2−m |ur |2 dx

= sup
0<r<R

(
−r2H(r)

)
× Rδ

δ
+ Rδ

∫

BR

r2−m |ur |2 dx .

Now applying Lemma 2.1 and Proposition 2.3, there exists a constant C2 depending only on
m such that

δR−δ

∫

BR

r2−m+δe(u) dx ≤C2

∫

B2
√
m−2

r2−m |ur |2 dx + 4R2H(R)+.

⊓,
Also, we can prove the following

Corollary 2.5 Suppose u satisfies (1.1), then there is a constant C3 depending only on m
such that for every 0 < δ < 1,

δ

∫

BR

r2−m−δe(u) dx ≤C3

∫

B2
√
m−2

r1−me(u) dx + 4R2H(R)+, ∀R > 0.

Proof Similar to the proof of Corollary 2.4, for 0 < δ < 1 and R > 2
√
m − 2,

∫

BR\B2
√
m−2

r2−m−δe(u) dx = −
∫ R

2
√
m−2

r1−δH(r) dr +
∫

BR\B2
√
m−2

r2−m−δ |ur |2 dx

≤ sup
2
√
m−2<r<R

(
−r2H(r)

)
×

∫ R

2
√
m−2

r δ−1 dr

+
∫

BR\B2
√
m−2

r2−m |ur |2 dx

≤ sup
2
√
m−2<r<R

(
−r2H(r)

)
× 2

√
m − 2
δ

+
∫

BR

r2−m |ur |2 dx .

Then Lemma 2.1 and Proposition 2.3 gives the desired estimate. ⊓,
Now we prove Theorem 1.1.

Proof of Theorem 1.1 Suppose the large energy condition holds, i.e., the claim (1) is true.
Then according to Lemmas 2.1 and 2.2 (or c.f. [7]), we know that H(r) ≤ 0 for every r > 0.
Now the claim (2) follows from Proposition 2.3.

From the claim (2) to the claim (3), we need only to prove that
∫

Rm
r2−m−δ |du|2 dx < ∞.

holds for some δ > 0. According to Corollary 2.5, we need only to claim that
lim inf R→∞ R2H(R)+ ≤ 0. This is true because

lim inf
R→∞

R2H(R)+ ≤ lim inf
R→∞

∫

{R}×Sm−1
|ur |2 dθ

123
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and the claim (2) implies the righthand is zero.
From the claim (3) to the claim (1) is obvious. ⊓,

3 Proof of Theorem 1.2

The following Lemma is proved in [8].

Lemma 3.1 Suppose f is a non-constant nonnegative smooth function satisfying

% f ≥ 1
2
r fr ,

then there exists a constant C > 0 such that for r large enough,
∫

Sm−1
f (r, θ) dθ > Cr−mer

2/4.

Let d(x) = dist(u(x), u(0)), then we have the following

Lemma 3.2 (Refined energy estimate) Suppose u is a quasi-harmonic sphere, then there is
a constant Cm depending only on m such that for all R > 0,

∫

BR

d2 dx ≤ CmRm
∫

B2
√
m−2

r1−m |ur |2 dx,

∫

BR

|∇d|2 dx ≤ CmRm−2
∫

B2
√
m−2

r1−m |ur |2 dx .

Remark 3.1 1. Denoted ER(u) by the energy of u on BR , i.e.,

ER(u) =
1
2

∫

BR

|du|2 e−x2/4 dx .

Then apply Corollary 2.5 to this Lemma to obtain the following estimate
∫

BR

d2 dx ≤ CmRmER(u),
∫

BR

|∇d|2 dx ≤ CmRm−2ER(u).

2. Li and Zhu (c.f. Lemma 3.2 in [8]) obtained a similar result with constantCm,u depending
only on m and the total energy of u such that

∫

BR

d2 dx ≤ Cm,u Rm,

∫

BR

|∇d|2 dx ≤ Cm,u Rm−2.

Proof of Lemma 3.2 It is clear that

d(r, θ) ≤
∫ r

0
|us(s, θ)| ds, |∇d| ≤ |du| .

123
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Since the total energy of u is finite, by Lemma 2.2, we have
∫

Sm−1

(|ur |2 − e(u)
)

dθ ≤ 0, r > 0.

Applying (2.9), we obtain
∫

BR

|∇d|2 ≤ 2C2Rm−2
∫

B2
√
m−2

r2−m |ur |2 dx, R > 0.

Next, we show
∫

Sm−1

(∫ r

0
|us(s, θ)| ds

)2

dθ ≤ Cm

∫

B2
√
m−2

r1−m |ur |2 dx, ∀r > 0.

Then the first part of the this Lemma follows from this inequality. Without loss of generality,
assume r > 1. Applying Proposition 2.3 and taking δ = 1/2, we get

∫

BR

r7/2−m |ur |2 dx ≤ C1

∫

B2
√
m−2

r2−m |ur |2 dx, R > 0.

Using Minkowski’s inequality, we get
(∫

Sm−1

(∫ r

0
|us(s, θ)| ds

)2

dθ

)1/2

≤
∫ r

0

(∫

Sm−1
|us(s, θ)|2 dθ

)1/2

ds

≤
∫ 1

0

(∫

Sm−1
|us(s, θ)|2 dθ

)1/2

ds

+
∫ r

1

(∫

Sm−1
|us(s, θ)|2 dθ

)1/2

ds

≤
(∫ 1

0

∫

Sm−1
|us(s, θ)|2 dθ ds

)1/2

+
(∫ r

1
s5/2

∫

Sm−1
|us |2 dθ ds

)1/2 (∫ r

1
s−5/2 ds

)1/2

≤ Cm

(∫

B2
√
m−2

r1−m |ur |2 dx

)1/2

.

⊓,

Lemma 3.3 Suppose u is a quasi-harmonic sphere, then there is a constant Cm depending
only on m such that

∫
−

Br
exp

(
C−1
m Er (u)−1/2r2−md

)
dx ≤ Cm, ∀r > 1.

Proof By the energy estimate Corollary 2.5, using an argument similar to the one used in
the proof of Lemma 3.5 in [8], we can prove that the BMO subnorm [d]∗,B2r of d over B2r
satisfies

[d]∗,B2r := sup
x∈Q⊂B2r

∫
−

∣∣d(y) − dQ
∣∣ dy ≤ Cm

√
E2r (u)(1 + r)m−2, (3.1)

123
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where the supermum is taken over all cubes x ∈ Q ⊂ B2r . The John-Nirenberg theorem (c.f.
Lemma 1 in [5]) claims that there is two constants C5,C6 depends only on m such that for
all cubes Q ⊂ B2r ,

∣∣{x ∈ Q :
∣∣d(x) − dQ

∣∣ > s
}∣∣ ≤ C5 exp

(
− C6s
[d]∗,B2r

)
|Q| ,

which implies
∫
−

Br
exp

(
C6

∣∣d − dBr
∣∣

2[d]∗,Br

)

dx ≤ C5, ∀r > 0.

Since we have the estimate (3.1), as a consequence, there is a constant C7 which depends
only on m such that

∫
−

Br
exp

(
C−1

7 Er (u)−1/2r2−m ∣∣d − dBr
∣∣
)

dx ≤ C7, ∀r > 1.

Finally, according to Lemma 3.2, we can find a constant C8 depending only m such that

dBr :=
∫
−

Br
d dx ≤ C8Er (u)1/2.

Therefore, we get the desired estimate. ⊓,

Remark 3.2 Checking the proof of Lemma 3.5 in [8] step by step, and using the argument
mentioned above, one can prove the following refined estimate,

∫
−

Br
exp

(
C−1
m Ẽ2

√
m−2(u)

−1/2r2−md
)

dx ≤ Cm, ∀r > 1.

Here

ẼR(u) =
∫

BR

r1−m |ur |2 dx .

In fact, checking the proof (c.f. page 455 in [8] ), the constants come from either Lemma 3.2
or Ẽ3m(u) which can be controlled by Ẽ2

√
m−2(u) thanks to Corollary 2.5. Hence one can

prove the required refined BMO estimate (3.1).

Now we give a poof of Theorem 1.2.

Proof of Theorem 1.2 Let Ñ be the universal covering of N . Let ũ : Rm −→ Ñ be a lift of
u with ũ = u ◦ π where π : Ñ −→ N is the covering map. It is easy to see that

∫

Rm
e(ũ)e−|x |2/4 dx < ∞.

Set f = ρ ◦ ũ, then

% f − 1
2
r∂r f = ∇̃2ρ(ũ)(dũ, dũ) ≥ 0.

Fixed p > 0. Notice that there is a constant C > 0 such that
∫

B2R

f p dx =
∫

B2R

(ρ ◦ ũ)p dx ≤ C p
∫

B2R

e
p
4 d̃2/m

dx, R > 0. (3.2)
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Applying Young’s inequality,

A + B ≥ (PA)1/P (QB)1/Q , A, B > 0, P, Q ≥ 1, 1/P + 1/Q = 1,

we obtain that for δ̃ = p/(2m),

δ̃r2−md̃ +
( p

4
− δ̃

)
r2 = p

2m
r2−md̃ +

( p
4

− p
2m

)
r2

= p
4

(
2
m
r2−md̃ + m − 2

m
r2

)

≥ p
4

(
r2−md̃

)2/m (
r2)(m−2)/m

= p
4
d̃2/m .

Therefore, according to (3.2), for R > 0, we have

∫

B2R

f p dx ≤ C p
∫

B2R

eδ̃R2−md̃(ũ,y0)e(p/4−δ̃)R2
dx

= C p
∫

B2R

e2m−2 δ̃(2R)2−md̃(ũ,y0)e(p/4−δ̃)R2
dx . (3.3)

We can choose p > 0 sufficiently small so that

2m−2δ̃ = 2m−3m−1 p ≤ C−1
m E−1/2,

which is equivalent to

E ≤ m2

4m−3C2
m p2 .

According to Lemma 3.3 and (3.3), we can see that

∫

B2R

f p dx ≤ C pe(p/4−δ̃)R2
∫

B2R

exp
(
C−1
m E−1/2(2R)2−md̃(ũ, y0)

)
dx

≤ C pCm(2R)me(p/4−p/(2m))R2

holds for R large enough.
If f is not a constant, applying Lemma 3.1 we obtain that for R large enough,

∫

BR

f dx ≥ Cu R−2eR
2/4.

Here Cu > 0 is a constant which is independent of R. Since f ≥ 0 satisfies

div
(
e−|x |2/4∇ f

)
≥ 0,
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applying maximum principle and Moser’s iteration (c.f. page 167 in [7]), for every p > 0,
there is a constant Cp > 0 depending only on p,m such that for some x∗ ∈ ∂BR ,

∫
−

BR

f dx ≤ sup
BR

f

≤ f (x∗)

≤ sup
B1/R(x∗)

f

≤ Cp

(∫
−

B2/R(x∗)
f p dx

)1/p

≤ CpRm/p
(∫

B2R

f p dx
)1/p

holds for R large enough. Here we used maximum principle for f in the second inequality.
Consequently, for R large enough

∫

B2R

f p dx ≥ C−p
p C p

u R−(m+2)p−mepR
2/4. (3.4)

Together with (3.3) and (3.4), we know that

0 < C−p
p C p

u ≤ C pCm2m R2m+(m+2)pe−pR2/(2m) → 0, as R → ∞.

This contradiction means that f is a constant. Moreover, since ρ is a strictly convex function,
we get that dũ = 0, i.e., ũ is a constant. As a consequence, u is a constant. ⊓,

Appendix A: Example

Example A.1 We will construct a strictly convex function which is of exponential growth.
Consider a metric g on R3 given by

g = dx2 + dy2 + φ(e2x + e2y)dz2.

Here φ : [0,∞) −→ R+ satisfies

φ′ > 0, ∀t
(
√

φ)′′(t)t + (
√

φ)′(t) < 0, t > 1.

Taking

√
φ(s) = 1 +

∫ s

1

1
t (1 + t)

dt, s > 1.

for example. Let r =
√
x2 + y2, x = r cos θ, y = r sin θ , then we can rewrite

g = dr2 + r2dθ2 + φ(e2r cos θ + e2r sin θ )dz2.

Now the hessian of r is given by

Hessg r = 1
2
L∇gr g = rdθ2 + (e2r cos θ cos θ + e2r sin θ sin θ)φ′dz2.
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On the one hand, |∇gr | = 1 and ∇g
∇gr∇gr = 0, hence the curve r 1→ (r, θ, z) is a geodesic

for every fixed θ, z. Then it is easy to check that

ρ((x, y, z)) := distg((x, y, z), (0, 0, z)) =
√
x2 + y2.

On the other hand, one can check that

1
2

Hessg r2 =dx2 + dy2 + (e2x x + e2y y)φ′dz2.

As a consequence, r2 is not convex.
Now for every α > 0, choose u = eαx + eαy , we have

Hessg u = α2(eαx + eαy)(dx2 + dy2)+ α(e(2+α)x + e(2+α)y)φ′dz2 > 0.

Moreover, u is of exponential growth, i.e.,

u < eαρ .

By the way, the Riemannian curvature satisfies

Rg(∇gx,∇g y,∇gx,∇g y) = 0,

Rg(∇gx,∇gz,∇gx,∇gz) = −
√

φ(
√

φ)xx ,

Rg(∇gz,∇g y,∇gz,∇g y) = −
√

φ(
√

φ)yy .

By the assumption of φ, we know that the Riemannian curvature can not be nonpositive.

References

1. Chang, K.C., Ding, W.Y., Ye, R.G.: Finite-time blow-up of the heat flow of harmonic maps from surfaces.
J. Diff. Geom. 36(2), 507–515 (1992)

2. Coron, J.M., Ghidaglia, J.M.: Explosion en temps fini pour le flot des applications harmoniques. C. R.
Acad. Sci. Paris Sér. I Math. 308(12), 339–344 (1989)

3. Ding, W.Y., Lin, F.H.: A generalization of Eells-Sampson’s theorem. J. Partial Diff. Equ. 5(4), 13–22
(1992)

4. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)
5. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14, 415–426

(1961)
6. Li, J., Wang, M.: Liouville theorems for self-similar solutions of heat flows. J. Eur. Math. Soc. (JEMS)

11(1), 207–221 (2009)
7. Li, J., Yang, Y.Y.: Nonexistence of quasi-harmonic spheres with large energy. Manuscripta Math. 138(1–2),

161–169 (2012)
8. Li, J., Zhu, X.R.: Non existence of quasi-harmonic spheres. Calc. Var. Partial Diff. Equ. 37(3–4), 441–460

(2010)
9. Lin, F.H., Wang, C.Y.: Harmonic and quasi-harmonic spheres. Comm. Anal. Geom. 7(2), 397–429 (1999)

123


	A note on the nonexistence of quasi-harmonic spheres
	Abstract
	1 Introduction
	2 Proof of Theorem 1.1
	3 Proof of Theorem 1.2
	Appendix A: Example
	References


