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Abstract For a homotopy class [u] of maps between a closed Riemannian manifold M and a general manifold
N, we want to find a Dirac-harmonic map with the map component in the given homotopy class. Most known
results require the index to be nontrivial. When the index is trivial, the few known results are all constructive
and produce uncoupled solutions. In this paper, we define a new quantity. As a byproduct of proving the
homotopy invariance of this new quantity, we find a new simple proof for the fact that all the Dirac-harmonic
spheres in surfaces are uncoupled. More importantly, by using the homotopy invariance of this new quantity,
we prove the existence of Dirac-harmonic maps from manifolds in the trivial index case. In particular, when the
domain is a closed Riemann surface, we prove the short-time existence of the a-Dirac-harmonic map flow in the
trivial index case. Together with the density of the minimal kernel, we get an existence result for Dirac-harmonic
maps from closed Riemann surfaces to Kdahler manifolds, which extends the previous result of the first and third

authors. This establishes a general existence theory for Dirac-harmonic maps in the context of the trivial index.
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1 Introduction

Motivated by the supersymmetric nonlinear sigma model from quantum field theory (see [6]), Dirac-
harmonic maps from Riemann surfaces (with a fixed spin structure) into Riemannian manifolds were
introduced in [2]. They generalize harmonic maps and harmonic spinors. From the variational point of
view, they are critical points of a conformally invariant action functional. The Euler-Lagrange equation
then is an elliptic system coupling a harmonic map-type equation with a Dirac-type equation.

The existence of Dirac-harmonic maps from closed spin manifolds is a very difficult problem. So far,
there are only a few results in this direction. Most solutions found so far are uncoupled in the sense
that the map part is harmonic. The existence result of [1] for uncoupled solutions depends on the index
I(M,u) being non-zero (see Definition 2.2). However, when the domain and target are both closed
Riemann surfaces, the index I(M,u) always vanishes. In this case, an existence result about uncoupled
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Dirac-harmonic maps was proved in [3] by the Riemann-Roch formula. Later, this result was generalized
to Kéhler manifolds in [16]. A general existence result for Dirac-harmonic maps from closed Riemann
surfaces to compact manifolds was first established in [9]. This implies the existence of Dirac-harmonic
maps when the index I(M,u) is nontrivial.

This then naturally raises the question of the existence of Dirac-harmonic maps in a given homotopy
class [u] between manifolds M and N with the trivial index I(M,u). Of course, we should first identify
conditions under which this index vanishes. When the domain M is a closed Riemann surface with
positive genus and the target N is an odd-dimensional oriented manifold, there is always a spin structure
on M such that the index I(M,u) is nontrivial. When, in contrast, M is a closed Riemann surface and
N is an even-dimensional spin manifold, the index I(M,u) is always zero. Therefore, here we consider
the case where the target manifold N is a Kéhler spin manifold. In this case, it is necessary to use a new
quantity that can replace the index I(M,u). For this purpose, we introduce a candidate that uses the
complex structure of the target manifold. More precisely, we first decompose the twisted Dirac operator
as P = lDiO + ngJ according to the decomposition (u*T'N)® = w*T1 oN @ u*Ty oN. Then we just
consider the kernel of one of the two operators, such as 13170‘ We define

1 u
I(M,u*T1oN) := [2dim¢;ker¢1,0]
Za

for an even-dimensional spin manifold M whenever the complex dimension of the kernel of ]ﬂio is even.

In order to be useful for our purposes, this should be homotopy invariant. Let us first look at an
example. Suppose that M = CP! and N is a compact surface. Consider any map u : M — N, the spinor
bundle XCP', and the twisted bundle CP* ®@u*Ty oN. Let gy be the genus of N and ¢1 (u*T1 oN) = a7,
a = 2deg(u)(1 — gn), where « is the tautological bundle of CP'. The unique spin structure of CP! is
determined by 7 since AV°CP! = 42. Then as a holomorphic bundle, we have

YCP' @ u*T1 oN = (y @ A»'CP! ® 7) ® v* = v** @ A% CP! @ 421,
Since

0, >0,
dime HO(CPY,A™) = "
1—-m, m<0,

we conclude that

dimg ker Eio = dime H(CP!,4*™) + dime H'(CP!, y*t)
= dimg H°(CP',4**1) 4 dimg HO(CP',4'%)
= |a| = 2|deg(u)(gn — 1)|.
Therefore, dim¢ ker 12)711,0 is invariant in the homotopy class [u]. This implies the homotopy invariance of
Z(CPY,u*Ty oN), which is equal to [|deg(u)(gn — 1)|]z,. Moreover, the dimension of the kernel of the

Dirac operator is a constant in a given homotopy class. Then the following well-known fact follows from
the first variational formula.

Proposition 1.1 (See [17]).  There is no coupled Dirac-harmonic map from the 2-sphere into a compact
Riemann surface.

In general, we can give two different sufficient conditions to guarantee the homotopy invariance of Z.

Theorem 1.2.  Suppose that M is an even-dimensional spin Riemannian manifold and (N,i) is a
Kahler manifold. If one of the following holds:

(1) the complex spinor bundle (XM, i1) over M admits a commuting real structure j, i.e., a real
structure (j2 = idsar, jiy = —i1j) commutes with Clifford multiplication and N is hyperKdhler;

(2) the complex spinor bundle XM over M admits a commuting quaternionic structure j; and there
exists a parallel real structure jo on Th oN, i.e.,

j3 =idr N, Jjoi = —ij2, Vij2=0,
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then all the eigenspaces of IZ)If’O are quaternionic vector spaces for any map u: M — N and Z(M,u*T1 ¢N)
is invariant in the homotopy class [u].

Moreover, if Z(M,u*T; oN) # 0, then there is a real vector space of real dimension greater than or
equal to 4 such that all (4,1)’s are uncoupled a-Dirac-harmonic maps as long as there is an a-harmonic
map U € [u] for a > 1.

Here, a-Dirac-harmonic maps are the critical points of the following functional:
1 1
)= [ Qrla) 4] [ @ Vsweery, Va1
2 /m 2 /m

They are generalizations of Dirac-harmonic maps (i.e., the case of @ = 1). As generalizations of harmonic
maps, a-harmonic maps are the critical points of the following functional:

1
Eo(u) = 3 /M(l + |dul®)*, Ya>1,

which was introduced by Sacks and Uhlenbeck [14].

By the statement in [5, Theorem 2.2.2], such a commuting real structure in Theorem 1.2 always exists
on M if m =0,6,7 (mod 8). In particular, when m = 0,6 (mod 8), we can get the existence of uncoupled
Dirac-harmonic maps.

Corollary 1.3.  Let m be the dimension of M. Suppose one of the following holds:

(a) m = 0,6 (mod 8), N is a hyperKihler manifold, and a homotopy class [u] satisfies Z(M,u* T oN)
# 0.

(b) m = 2,4 (mod 8), N is a Kihler manifold with a parallel real structure jo defined in Theorem 1.2,
and a homotopy class [u] satisfies Z(M,uw*T1 oN) # 0.
Then there is a real vector space of real dimension greater than or equal to 4 such that all (a,)’s are
uncoupled a-Dirac-harmonic maps as long as there is an a-harmonic map @ € [u] for a > 1.

Remark 1.4.  Note that the case m = 6 (mod 8) is not included in [1] due to the definition of the index
a(M,u). When m = 0 (mod 4), the triviality of the index «(M,u) implies that of the index ind(lD+),
where ]Z)Jr comes from the decomposition of the Dirac operator according to that of the spinor bundle
(see Section 2). When m = 2k and k is odd, the triviality of ind(J)™) does not imply that of ind(lDfO).
Sun [16] used the nontrivial index ind(lDIO) to get an existence result. Our corollary is still valid even if

ind(]Z)IO) = 0. For example, our result applies to the case where the dimensions of the kernels in those
four subspaces in the decomposition (2.8) are all equal to one, which is never considered in literature.

When M is a closed Riemann surface, we can prove the short-time existence of the a-Dirac-harmonic
map flow into a Kéhler manifold, which generalizes the result in [10].

The rest of this paper is organized as follows. In Section 2, we recall some facts about Dirac-harmonic
maps as well as the Dirac operator. In Section 3, we prove Theorem 1.2 and end this section by showing
the density of the minimal kernel. In Section 4, under the minimality assumption on the kernel of JDT,“O,
we prove the short-time existence of the a-Dirac-harmonic map flow (see Theorem 4.2) and the existence
of Dirac-harmonic maps (see Theorem 4.7). In Appendix A, we solve the constraint equation and prove
Lipschitz continuity of the solution with respect to the map.

2 Preliminaries

Let (M, g) be a compact Riemann surface with a fixed spin structure x. On the complex spinor bundle
Y M, we denote the Hermitian inner product by (-,-)xp. For any X € I'(T'M) and £ € I'(XM), the
Clifford multiplication satisfies the following skew-adjointness:

(X-&Emav=—&X -msm.

Let V be the Levi-Civita connection on (M, g). There is a unique connection (also denoted by V) on
YM compatible with (-, -)sps. Choosing a local orthonormal basis {eg}g=1,2 on M, we see that the usual
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Dirac operator is defined as @ := eg - Vg, where 8 = 1,2. Here and in the sequel, we use the Einstein
summation convention. One can find more about spin geometry in [11].

Let u be a smooth map from M to another compact Riemannian manifold (N, h) of dimension n > 2.
Let v*T'N be the pull-back bundle of TN by u and consider the twisted bundle XM ®g v*T'N. On this
bundle, there is a metric (-, )spgurn induced from the metric on XM and w*TN. Also, we have a
connection V on this twisted bundle naturally induced from those on XM and w*T'N. In local coordinates
{y"}i=1.....n, the section ¥ of M @g u*T'N is written as ¢ = 1; ® 8, (u), where each 9" is a usual spinor
on M. We also have the following local expression of V:

Vi = (V' + 5 (w) Vil y*) @ 0y (u),

where F;k’s are the Christoffel symbols of the Levi-Civita connection of N. The Dirac operator along
the map u is defined as

D= o Ve, = (P + T (w) Ve, 0! (ea - 9)) @ Oy (w), (2.1)

which is self-adjoint (see [7]). Sometimes, we use [0 to distinguish the Dirac operators defined on different
maps. In [2], Chen et al. introduced the functional

L) = 5 [ (da? + (0. D) sascrn)

1 of ou’ ou’

== hij —— + hyj 20 .
5 /M ( iWg* 5 55 + hig(w) (¥ Dy >2M>
They computed the Euler-Lagrange equations of L:

1 . .
7_m(u) o 5 ITJ <1/Jl: vul ’ wJ>EM =0, (2'2)
Dyt = Pyt + Fj—k(u)Veauj(ea k) =0, (2.3)
where 7™ (u) is the m-th component of the tension field (see [7]) of the map u with respect to the

coordinates on N, Vu! -7 denotes the Clifford multiplication of the vector field Vu! with the spinor 17,
and R}, stands for the components of the Riemann curvature tensor of the target manifold N. Define

1 . .
R(u, 1) = 3 (', Vul - ) sy Oy
We can write (2.2) and (2.3) in the following global form:

{T(u) = R(u, 1)), (2.4)
Dy =0, (2.5)

and call the solutions (u, ) Dirac-harmonic maps from M to N.
With the aim to get a general existence scheme for Dirac-harmonic maps, the following heat flow for
Dirac-harmonic maps was introduced in [4]:

Ou = 7(u) — R(u,v) on (0,7) x M, (2.6)
D=0 on [0,T] x M. 2.7)

When M has a boundary, the short time existence and uniqueness of (2.6)—(2.7) was shown in [4].

For a closed manifold M, the situation is more complicated because one cannot uniquely solve the
second equation (2.7) and the kernel of the Dirac operator may jump along the flow. As we stated in
Section 1, the short-time existence is only known in the minimal kernel case, i.e., dimgker) = 1. However,
when the target manifold N is an even-dimensional spin manifold, the index a(M,u) always vanishes for
any map u between M and N. In order to deal with this case, we utilize the complex structure on V.
We denote the complexification of u*T'N by (u*TN)®. Then we have

YM @g u*TN = (M @¢c C) @ w'TN = ZM @¢ (u*TN)C.
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The pull-back metric u*g on u*TN could be naturally extended to a Hermitian product on (u*T'N)C.
Moreover, there is a natural Hermitian product on XM ® (u*TN)® induced from those on ¥ M and
(u*TN)C, which is denoted by (-, )EM@(uTN)C-

For a general even-dimensional spin Riemannian manifold M, there is a parallel Zs-grading G €
End(XM) given by G(¢) = (vV—1)"/2e1 - eg---e,, - 1 for a positively oriented orthonormal local frame
{e1,e2,...,em}, where m = dim M. Thus the spinor bundle can be decomposed as XM = Xt M &Y™ M,
where X*M’s are the eigenspaces of G associated with the +1, respectively. As G is Hermitian and
parallel, the decomposition is orthogonal in the complex sense and parallel. Consequently, we have

YM ®¢ (u*TN)C = (8T M ®@c u*TioN) @ (5~ M @c u*TioN)
®(STM @cu*ToaN) @ (5~ M ®c u* Ty 1 N), (2.8)

where we used (u*TN)® = w*Ty 0N @ u*T1oN. Moreover, we also have the following decomposition for
the Dirac operator:

D =D+ Do,
lﬁLo = lDio + Iﬁio,
Ipo,l = lD(J{l + 1%,1,
where Iﬂio (resp. lD(jil) is obtained by restricting ) on X*M ®@¢ u*Ti oN (resp. S*M ®@c u*Tp 1 N).
By [13], we can isometrically embed N into R?. Then (2.4)—(2.5) is equivalent to the following system:
{Agu = I1(du,du) + Re(P(S(duleg), es - ¥); ¥)),
P = S(du(ep), es - ¥),
where I7 is the second fundamental form of N in R?, and
S(du(eﬁ)v €g - 1/)) = (VUA : ,{][)B) ® I[(azAv azB)v
Re(P(S(du(eg), €p 1/})7 1/})) = P(S(azca 823); azA)Re(<1/JAa duc : ¢B>)

Here, P(&;-) denotes the shape operator, defined by (P(£; X),Y) = (A(X,Y),¢) for X, Y € I'(TN) and
Re(z) denotes the real part of z € C. Together with the nearest point projection:

m: Ny — N,

where N5 := {z € R? | d(z, N) < 0}, we can rewrite the evolution equation (2.6) as an equation in R?.
Lemma 2.1 (See [4]). A tuple (u,v), where u: [0,T] x M — N and ¢ € T(EM @u*TN), is a solution
of (2.6) if and only if

Out — Aut = fﬁgc(uxVuB, Vuc) - wg(u)wgD(u)ng(¢D, vuf - ¢F)

on (0,T)x M for A=1,...,q. Here, we denote the A-th component function of u : [0,T]x M — N C R?
byu? : M — R, write w3 () for the B-th partial derivative of the A-th component function of  : R — RY,
and the global sections 1 € T'(XM) are defined by 1) = 1 @ (04 ou), where (04)A=1,....q 1s the standard
basis of TR?. Moreover, V and (-,-) denote the gradient and the Riemannian metric on M, respectively.

For future reference, we define

F(u) i= —mpo(u)(Vu®?, Vu©), (2.9)
() i= = (w)mp ()np (07, Vu - 7). (2.10)

Note that for u € C1(M, N) and ¢ € I'(XM ® u*TN), we have

I (duy(eqa), dup(eq)) = *FlA(uNpaA‘u(p)’
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R(u, )|y = —F5 (u,9) 504 up)

for all p € M, where {e,} is an orthonormal basis of T, M.
Next, let us fix some notations, which will be used in Section 4 and Appendix A. For every T > 0, we
denote by Xt the Banach space of bounded maps:

Xr = B([07T1§ Cl(Mv Rq))a

lullxr :=  max sup (Il (t, leoary + 1Vu (E )l cocar))-
= €[0,7]

red e
For any map v € X, the closed ball with center v and radius R in X is defined by
Bg(v) == {u € Xr | |lu—v| < R}.
We denote by P“t:¥s = P“t:Vs(z) the parallel transport of N along the unique shortest geodesic from
m(u(z,t)) to w(v(x,s)). We also denote by P¥*s the inducing mappings
(mouy)*TN — (mwowvs)*TN,
XM @ (rous)* TN = XM @ (7 owvs)*TN,
and
IFoi(EM @ (mrou)*TN) = T (XM @ (movg)*T'N).
We also define
Alur) = sup{A | spec(P™™) \ {0} € R\ (=A(ur), A(ur))}
and y:(z) : [0,27] — C as

Alwy)
Ve(x) = (2t)e””.
In general, we also denote by v the curve y(x) : [0,27] — C as
A
y(z) = Ee“‘ (2.11)

for some constant A to be determined. Then the orthogonal projection onto ker(™ "), which is the
mapping

T2(XM @ (mow)*TN) - T'2(EM ® (mou)*T'N),
can be written via the resolvent by

1 TOoUt
5 ——_/ RO\, D" )sdA,
2 Yt

1

TOUL

where R(\, ]Z)mmt) : T2 — I'f2 is the resolvent of IP Tz — e,
At the end of this section, we recall the definition of the index.

Definition 2.2. Let £ — M be a Riemannian real vector bundle with a metric connection. Then
one can associate the twisted Dirac operator »". C®(M,XM ® E) — C*(M,XM ® E) with the index
I(M, x, E) € KOy, (pt), where
Z, ifm=0(4),
KO (pt) =X Zy, ifm=1,2(8),

0, otherwise.

The index I(M, x, E) can be determined out of ker(lDE) using the following formula:

{ch(E) - A(M)}[M], if m=0(8),
[dime (ker (P ))]z,,  ifm=1(8),

I(M,x, E) = {dlm@c(m(lf))} ,

5 if m=2(8),

%{Ch(E) CAM)}M], if m =4 (8).
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In particular, when F = «*T'N and x is fixed, we denote I(M, x, E) by I(M,u).

3 The quaternionic structure on the twisted bundle

In this section, we prove Theorem 1.2 by constructing a commuting quaternionic structure on the twisted
bundle XM ®c u*T; 0N and show the density of the minimal kernel.

Proof of Theorem 1.2.  Let p : Cl,, — Endc(X,,) be an irreducible complex representation of the
complex Clifford algebra Cl,,. Suppose that the condition (2) holds. Then every fibre of the complex
spinor bundle XM = Spin(M) x, ¥,, turns into a quaternionic vector space by defining [p, v]h := [p, vh]
for all p € Spin(M), v € ¥,,, and h € H.

Since the tensor product of the twisted bundle XM ®c w*T N is taken over C, there is a natural
complex structure I on XM ®c u*T oN defined by

I(W* @c 0;) := i(Y*) @c O = ¥F @c i(0k).

However, the quaternionic structure on XM cannot directly extend to the twisted bundle. To overcome
this problem, we need an extra structure on v*7} oN. By our assumption, we define J : M ®@c¢ v* T 0N
— XM Qc U*TL()N by

J(' @c 0;) = j1 (V") ®c j2(0).-

Since both j; and js anti-commute with the complex structure 7, J is well-defined on ¥M ®¢ w*T1 oN.
By the definitions of j; and j,, J anti-commutes with I and J? = —1. Moreover, J also commutes with
the Clifford multiplication and hence the Dirac operator 12)1{0 (see also [5]), i.e.,

wqf,o oJ=Jo lqu,o-

Therefore, we conclude that all the eigenspaces of B)'f’o are quaternionic vector spaces with two complex
structures I and J, which are anti-commuting with each other.

If the condition (1) holds, i.e., j1 is a commuting real structure and js is a quaternionic structure, then
it follows from the argument above that the conclusion is also true.

When m # 3 (mod 4), the eigenvalues are symmetric with respect to the origin (see [5, Remark 2.2.3]).
For any two maps in [u], there is a piecewise smooth curve connecting them with the parameter ¢ € [0, 1].
Along this curve, the eigenvalues of the Dirac operator are continuous functions of ¢. Suppose that there is
an eigenvalue A1 (¢) that decreases to zero as t — T. By the symmetry of the eigenvalues, there is another
eigenvalue A_1(t) such that A_1(t) = —A1(t). Therefore, the difference in the quaternionic dimension of
the kernel of the corresponding Dirac operator is always an even number.

When m is even, we have a parallel Zs-grading G described in the previous section. From the
orthogonality of the splitting, we have

<¢71l,01/)+7’(/}+> = <w1lt,01/}_7’(/}_> =0
for all Y+ € C°(M,S*M @ u*T1 oN). Thus,
(P1o¢* )2 = (P g™, 97 )2 = 0. (3.1)

Now, for any smooth variation (us)sc(—c,) of the a-harmonic map @ € [u] with us|s—o = @, we split
the bundle ¥M ® u}T7 0N into

XM ® ’U,:Tl’oN = (E+M ® U:Tl}oN) D (E_M ® ’U,:Tl’oN),

which is orthogonal in the complex sense and parallel. Since Z(M,u*T; oN) # 0, there exists a U €
kerquf’O which can be written as ¥ = Ut + U~ where U+ € F(EiM ® u*Th oN). Then there always
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exists a variation W, of ¥ such that UF € T'(X*M ®@ u*T} ¢N) are smooth variations of W+, respectively.
Moreover, (3.1) implies that

d u
—|  (PTVE ) =0.
dt s=0
Therefore, for the a-harmonic map u, we have
d d
—| L%(us, ¥E) = — / (1 + |dus|*)* = 0.
dt =0 dt s=0J M
Hence, we get a-Dirac-harmonic maps (i, UF). O

In the rest of this section, we show the density of the minimal kernel. By the definition of
IZ(M,u*Ty oN), we have
O, lf indu*Tl,gN(M) = 0,

dimgker (] ) =
nker(P10) {1, if indy- 7, v (M) # 0.

If the equality holds above, then we say that l])'f’o has a minimal kernel. Using the analyticity of N, one
can prove the following density result for the minimal kernel.

Lemma 3.1. If ]Z)qf}o has the minimal kernel, then ]D?:O also has the minimal kernel for a generic map
u' € [ul.
Proof.  Let « € [u] and H be any homotopy between u' and u. More precisely, H : [0,1] — C*°(M, N)
with H(0) = u and H(1) = u’. We can cover the image of H by finitely many balls {V;}£ | of radius less
than 1inj(IN) such that

VinVig1 #0 fori=1,...,L—1

and
weVy, u eV

We choose u; € Vi N Vy arbitrarily and define a homotopy H} by
H}(z):= XDy () (¢ exp;(lm) up(x)),
where x € M and exp is the exponential map on N. We denote by
Py = Py(z) : T 0N u@) = T1,0N 12 ()

the parallel transport along the unique shortest geodesic of N connecting u(z) and H}(x) and consider

_ H}
D, =P, 10¢1,60Pt.

Since Ip; depends analytically on t by the analyticity of N, lDTffO has the minimal kernel for all but finitely
many ¢ € [0,1]. Therefore, we can assume that lﬂf}o has the minimal kernel. Continuing this procedure,

we can get uy,_1 € Vi,_1 NV} such that quffEfl also has the minimal kernel and a homotopy HtL ~! between

L—1
ur,_1 and u’ such that ]ﬂflf) has the minimal kernel for all but finitely many ¢ € [0, 1]. Hence the set
of maps along which the (1,0)-part of the Dirac operator has the minimal kernel is C*°-dense in [u]. Its
C'-openness directly follows from the continuity of the eigenvalues. O

4 The heat flow for a-Dirac-harmonic maps

In this section, we prove the short-time existence of the heat flow for a-Dirac-harmonic maps. Since we
are working on a closed surface M, we cannot uniquely solve the Dirac equation in the following system:

W <T“(u) - éR(u, w)), (4.1)

DUy =o. (4.2)

875'11, =
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The short time existence and its extension are the obstacles. This system (if it converges) leads to an
a-Dirac-harmonic map which is a solution of the system
a 2\« 1
7 (w) = (L [duP)®) = S R(u,),
Py =0,
where 7 is the tension field.
4.1 Short time existence

As in Section 2, we now embed N into R?. Let u : M — N with u = (u?) and denote the spinor along
the map u by 1 = ¢ @ (04 o u), where 1)4’s are spinors over M. For any smooth map 1 € C§°(M,RY)
and any smooth spinor field £ € C§°(XM ® R?), we consider the variation

w=m(u+tn), ¥ =rplu)@W? +t£P), (4.3)

where 7 is the nearest point projection as in Section 2. Then we have the following lemma.
Lemma 4.1 (See [10]).  The Euler-Lagrange equations for L* are
A
V3, uPVuP V. u
14 |Vul?

, AT (WG () (7, VuE )
a(l+ |[Vul?)e—1

Aut = —2(a — 1) + 750 (w)(Va, V)

and
Pt = mho(w)Vul .
Lemma 4.1 implies that (4.1)—(4.2) is equivalent to
V%,YUBVﬁuBVWUA
14 |Vul?

W}g(u)ﬂgD(u)”gF(u)W’D» Vu¥ 1/’F>
a(l + |Vu|?)e—1 ’

D™y =o0. (4.5)

Now, let us state the main result of this subsection.

o = Aut +2(a — 1) — 150 (u)(Vu? | VuC)

(4.4)

Theorem 4.2. Let M be a closed surface, and N be a closed n-dimensional Riemannian manifold.
Let ug € C*TH(M,N) for some 0 < p < 1 with dimerr(lﬁ;L,% =1 and ¢y € ker( ?foo) with ||Yo]|L2 = 1.
Then there exists an e = e1(M,N) > 0 such that for any « € (1,1 + €1), the problem (4.1)—(4.2) has a
solution (u,v) with

H¢t||L2 :1: Vte [O’T]: (4 6)
uli=0 = uo, Pli=0 = o
satisfying
u € CHHIHRIZ(N % [0,T], N)
and

e CHHI2(M x [0,T),2M @ u*TN) N L>®([0,T]; C*HH(M))
for some T > 0.

Proof.  We prove the theorem in two steps. In Step 1, we find a solution u : M x [0,T] — R? and
M — XM @ (mou)*TN of (4.4)—(4.5) with the initial values (4.6). Since 1), takes the value along
the projection 7 o uy, it remains to show that w takes the value in N, which will be proved in Step 2.

Step 1.  Solve (4.4)-(4.5) in R9.
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We first give a solution to (4.5) in a neighborhood of ug. For any T' > 0, we can choose ¢, d, and R as
in Appendix A such that u(z,t) € N5 and

AN (0 u)(@, 1), (1 0 0) (2, 8)) < € < %inj(N)

for all u,v € B} := BE(ug) = {u € Xr | ||u—@ollx, < R} N{ult—o = uo}, z € M, and t,s € [0,7],

where @ (z,t) = ug(z) for any ¢ € [0,T]. If R is small enough, then by Lemma A.5, we have
dlmerr(leu’) =1

and there exists a A = 1A(ug) such that

#{spec(DT5") N [-A, AT} =1

for any u € BY, and t € [0, 7], where A(uo) is a constant such that spec(;) \ {0} € R\ [=A(ug), A(uo)]-
Furthermore, for 1y € ker( 1;700) with [|¢bg]| 2 = 1, Lemma A.7 implies that

3 ~
2 < <1

for any u € BT1 and t € [0,T], where ¢ = Puottq) = 1;71“ + 1;12" with respect to the decomposition
INTES ker(]Dmut) @ (ker(P]4"))* and Ry = Ry(R, €, up) > 0.
Now, for any T' > 0 and & > 0, we define

vIi={ve Ot (M % [0,7)) | Hv||cl+u,%& < K, U|arxqor = 0}
Then, there exists a kg, := k(R1) > 0 such that
up +v GBEI, VoeVyr, Vk<kg,.

Now, we define kg := kg, and VT := V,g;

For every v € VT and uy +v € B} r,» Lemma A.8 gives us a solution (v + ug) to the constraint
equation. Since v +ug € C1T#(M), by LP regularity and Schauder estimates in [4], we have

[ (v +wo)ller+u(ary < O, M, N, Ko, [[uollcr+u(ar))- (4.7)

For any 0 < t,s < T, we also have

(v + uo)(t) — P(v +uo)(s))
= —I(m o (v + uo) (1)) #V (7 o (v + uo)(t))# (v + uo)(t)
+T(mo (v4uo)(s)#V(mo (v +ug)(s))#w (v + uo)(s)
= —I'(mo (v +uo)(t))#V (7o (v +uo) () #(1" (1) — (v +uo)(s))
= T(mo (v +uo) () #(V(m o (v+uo)(t)) — V(o (v+uo)(s)))#¥(v+ uo)(t)
— (I(m o (v+uo)(t)) — I o (v 4 uo)(s)))#V (7 o (v + o) (s))# (v + uo)(s),

ie.,

D7 (W + u0) (1) — (v + uo)(s))
= —T(m o (v + uo) () #(V (0 (v + ug)(t) — V(o (v+1u0)(8)))#¥ (v + uo)(£)
— (T( o (v +up)(t) — (w0 (v + ug)(5))#V (7 0 (v + ug) () #¢ (v + uo) (s),

where # denotes a multi-linear map with smooth coefficients. For any A € (0,1), by the Sobolev
embedding, LP regularity, and Lemma A.8, we have

[ (v + uo) (t) — (v + uo)(s)llor(ar

< C(A\, M, N, ko, [[uollor(any ) ([v(t) — v(s)[|Lee (ary + l|dv(t) — dv(s)]|Le)
< O\, M, N, ko, |[uollor (an)) |t — 5|2
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Therefore,
[ (v + wo)llcunrzary < C(ps M, N, Ko, [[uollcr(ar)- (4.8)

Now, when « — 1 is sufficiently small, for the (v,¢") above, the standard theory of linear parabolic
systems (see [15]) implies that there exists a unique solution v; € C?*t#1TH/2(M x [0,T],RY) to the
following Dirichlet problem

BVg(v + 1) BV, (v + up)?
14|V (v + ug)|?
+ 150 (v + uo)(V (v +u0)®, V(v + uo))
(WBWBDWEF)(U +u0) (P (v + u0), V(v + uo)” - ' (v + uo))
a1+ [V(v+ug)?)>t
V3,5 V(v + 1)V (v + ug)?
1+ V(o + w)?
w(-,0) =0, (4.10)

dw? = A w? +2(a 1)

+ Agud +2(a—1) : (4.9)

satisfying
ville2tuiturzarxiory) < €, M, N)([villcoarxioy + luolloz+v (ary + Ko)-

Since v (+,0) = 0, we have

[villcoarxiorny < Clu, M, N)T([[villcoarxfo.rny + lwollcz+vary + ko).

By taking 7" > 0 small enough, we get

lvillcoar o,y < C(py M, N)T ([Juol|c24v (ary + Ko)-

Then the interpolation inequality in [12] implies that v; € V'T for T' > 0 sufficiently small. For such a vy,
we have 1 (v1 +uyp) satisfying (4.7) and (4.8). Replacing (v, ¥ (v+ug)) in (4.9)—(4.10) by (v1, ¥ (v1 +ug)),
then we get vo € V'T. Tterating this procedure, we get a solution vg. 1 of (4.9)—(4.10) with (v, (v + ug))
replaced by (vg, ¥ (v + ug)), which satisfies

(V41 + wo) | cunrzary < C(p, M, N, ko, luollcr (ar)

and
k1l c2tmitnrzarsiory < Clps My N)([Juollc2+v (ary + Ko)-
By passing to a subsequence, we know that vy converges to some u in C%1(M x [0,T]) and v+ +uo
converges to some v in C°(M x [0,T]). Then it is easy to see that (u,1)) is a solution of (4.4)—(4.5) with
u(+,0) = up and ¥(-,0) = o.
Step 2.  wu(z,t) takes the value in N for any (z,t) € M x [0,T].
Suppose u € C*1(M x [0,T],R?) and

W€ O (M x [0,T], SM @ (x 0 w) TN) N L*([0, T); O+ (M)

satisfy (4.4)—(4.5). In the following, we write ||- || and (-, -) for the Euclidean norm and the scalar product,
respectively. Similarly, we write || - ||, and (-, -)4 for the norm and inner product of (M, g), respectively.
We define p: R? - R? by p(z) = z — w(z) and ¢ : M x [0,T] — R by

p(z,t) = ||pu(z,1)|* = XJPU@t
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A direct computation yields

<(§t — A) oz, t) = =2 Z IV(p* o u)(m,t)“é

A=1
+2{pou, —m5(u)FF ()
+ W@ o u, pig(u)Fy (u, 1))
e 0w TRV T )
where F{* and F3' are defined in (2.9) and (2.10), respectively.
Since pou € T, N and (dn), : R? — Ty, N, we have

(pou, ~rh(W)FE) = (pou, pi(u)FF) = 0.
Together with

4(a—1)
1+ |Vul?
< Ao = Dlfulle2anllp o ull[V(p o)
< 2(a = D([[ulZzane + IV (pow)]?),

(pou, V%,YUCVBUCV,YUB[)% (u))

we get (2 — A)p(z,t) < Cp, where C = C(||lul c2.(arxpo,). Since ¢(z,t) > 0 and ¢(z,0) = 0 for
any (x,t) € M x [0,T], we conclude ¢ = 0 on M x [0,7]. We have shown that u(z,t) € N for all
(z,t) € M x [0,T].

Finally, by using the e-regularity (see Lemma 4.5 below), we conclude that

u € CHHIHRIZ(N % [0,T], N)
and
Y e CHH2(M % [0,T], M @ u*TN) N L>([0,T]; C*H#(M)).

This completes the proof. ]

4.2 Regularity of the flow

In this subsection, we give some estimates for the regularity of the flow. The proofs can be found in [10]
and the references therein. Let us start with the following estimate of the energy of the map part.

Lemma 4.3.  Suppose that (u,v) is a solution of (4.1)—(4.2) with the initial values (4.6). Then

Ey(u(t)) + 2a/0 /M(l + [Vu®)* 1 owu|? = Ea(uo).

Moreover, E,(u(t)) is absolutely continuous on [0,T] and non-increasing.

Consequently, we can also control the spinor part along the heat flow of the a-Dirac-harmonic map.
Lemma 4.4.  Suppose that (u,) is a solution of (4.1)—(4.2) with the initial values (4.6). Then for
any p € (1,2),

[0 Dllwreoany < C, Ve [0,T],
where C = C(p, M, N, E,(ugp)).

To get the convergence of the flow, we also need the following e-regularity.
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Lemma 4.5. Suppose that (u,) is a solution of (4.1)—(4.2) with the initial values (4.6). Given
wo = (zo,t0) € M x (0,T], define

PR(OJo) = BR(.’L’()) X [to — Rz,to].

Then there exist three constants ea = e(M,N) > 0, es = e3(M,N,ug) > 0, and C =
C(p,R,M,N, E,(ug)) > 0 such that if

l<a<l4+e and sup  E(u(t); Bar(wop)) < €3,
[t074R2,t0]
then
VRI9 1 (Pr(en)) + BIVUll Lo (Pr(w)) < C,

and for any 0 < B < 1,

sup  [[O(t) [ cr4n(Bg o (zo)) T IVUllcoi8r2(Py g (w0)) < C(B)-

2
[to— T to]

Moreover, if

sup  sup  E(u(t); Bar(wp)) < €3,
M [to—4R?2,to]

then

”uHC“%H#/Z(Mx[to—%Q,to]) + Hw”C“*“/Q(MX[to—RTz,to]) + : 5111}2) | ”w(t)”CH“(M) <C
to—gto

4.3 Existence of Dirac-harmonic maps

In this subsection, we prove Theorem 4.7 by the short-time existence of the a-Dirac-harmonic map flow.
First, we prove the following existence result about the a-Dirac-harmonic maps for « > 1. Then, by the
compactness, we get a Dirac-harmonic map as the limit of these a-Dirac-harmonic maps. Last, we prove
that the bubbles can only be harmonic spheres, and finish the proof of Theorem 4.7.

Theorem 4.6. Let M be a closed spin surface and (N,h) be a closed Kihler manifold. Suppose that
there exists a map ug € C*TH(M,N) for some p € (0,1) such that dimerrlff?o = 1. Then for any
a € (1,14 €1), there exists a nontrivial smooth a-Dirac-harmonic map (ta,Va) such that the map part
Uq Stays in the same homotopy class as ug and ||Yg]| 2 = 1.

Proof.  Let us define

mg = inf{E,(u) | u € WH2*(M, N) N [uo]},
where [ug] denotes the homotopy class of ug. If ug is a minimizing a-harmonic map, it follows from
Lemma 4.3 that (ug,q) is an a-Dirac-harmonic map for any g € kerl])qf,oo. If Eo(ug) > mg, then

Theorem 4.2 gives us a solution
u e CHIIHRZ(N % [0,T), N)

and
Y e CHH(M % [0,T),SM @u*TN)N (1) L=([0,s]; C* (M)

0<s<T

to the problem (4.1)—(4.2) with the initial values (4.6).
By Lemma 4.3, we know

/ (1 +|Vu[?)* < Eq(uo).
M

Then it is easy to see that for any 0 < € < €3, there exists a positive constant ro = 7¢(€, @, Eo(up)) such
that for all (z,t) € M x [0,T),

VUZSCE U l/arl ;Se.
‘ | a\U0 0
By (x)
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Therefore, by Theorem 4.2 and Lemma 4.5, we know that the singular time can be characterized as
. . u(t;)
Z = {T € R‘ t}l}anlmerI'lDLO > 1}
and there exists a sequence {¢;} T such that
(u('7 ti)a 1/)<7 tl)) - <u('7 T)v w(: T)) in CZ-HL(M) X CI—HL/Q(M)

and
(. T)||L= = 1.

If Z = 0, then by Theorem 4.2, we can extend the solution (u,%) beyond the time T by using
(u(-,T),%(-,T)) as new initial values. Thus, we have the global existence of the flow. For the limit
behavior as t — oo, Lemma 4.3 implies that there exists a sequence {t;} — oo such that

/ |Deul (- ti) = 0. (4.11)
M

Together with Lemma 4.5, there are a subsequence, still denoted by {¢;}, and an a-Dirac-harmonic map
(U, Vo) € CP(M,N) x C®°(M, XM ® (uq)*TN) such that (u(-,t;),9(-,¢;)) converges t0 (uq, ) in
C?*(M) x CY(M) and ||¢a| 2 = 1.

If Z # (0 and T € Z, let us assume that E,(u(-,T)) > m§ and (u(-,T),9(-,T)) is not already an
a-Dirac-harmonic map. We extend the flow as follows: by Lemma 3.1, there is a map u; € C?*T#(M, N)
such that

my < Eq(u1) < Eo(u(-,T)) (4.12)

and
dimgker Py = 1. (4.13)

Thus, picking any v¢; € kerp™ with |[¢1]|,> = 1, we can restart the flow from the new initial values
(u1,11). If there is no singular time along the flow starting from (u,%1), then we get an a-Dirac-
harmonic map as in the case of Z = (). Otherwise, we use again the procedure above to choose (ug,1)2)
as initial values and restart the flow. This procedure will stop in finitely or infinitely many steps.

If infinitely many steps are required, then there exist infinitely many flow pieces {u;(z,t)}i=1, . o and
{T}i=1,... 00 such that

t
Ea(ui(t)) + 20[/ / (]. + ‘VUZ‘|2)G_1|8tUi‘2 = Ea(ui), vt S (O,Tl),
0o JM

where u;(+,0) = u; € C?*TH(M, N). If T;’s are bounded away from zero, then there is {t;} such that (4.11)
holds for ¢; € (0,7;). Therefore, we have an a-Dirac-harmonic map as before. If T; — 0, then we look at
the limit of E, (u;). If the limit is strictly bigger than m§, we again choose another map satisfying (4.12)
and (4.13) as a new starting point. If the limit is exactly m§, then we choose {t;} such that t; € (0,T;)
for each i. By Lemma 4.5, u;(t;) converges in C2(M) x C*(M) to a minimizing a-harmonic map wu,. If
Iﬁlf“o has the minimal kernel, then for any 1 € kerlﬁlffo, (uq, 1) is an a-Dirac-harmonic map as we showed
at the beginning of the proof. If quf"{) has the non-minimal kernel, by using the Zs-grading G ® id as in
the proof of Theorem 1.2, we get a-Dirac-harmonic maps (uq,¥E) for any ker)* 3 by = 1 + 1.

In particular, we can choose ¥, such that ||T ||z = 1 or || ||z = 1. By this procedure, we either

ol
get an a-Dirac-harmonic map or keep on choosing new maps satisfying (4.12) and (4.13). In the latter
case, since the energies of the initial maps are bounded and decreasing, they converge to the minimizing
energy m§. (Otherwise, suppose that the constant is C' > m§. Then one can choose a new map with a
lower energy such that the limit is not C.) Therefore, we also get an a-Dirac-harmonic map in the latter
case as before.

If it stops in finitely many steps, there exist a sequence {¢;} and some 0 < T} < 400 such that

Jim (u(s ), (5 43)) = (s Ya) - in C*(M) x CH(M),
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where (uq, 1) either is an a-Dirac-harmonic map or satisfies E, (u,) = m§. In the latter case, u, is a
minimizing a-harmonic map. Then we can again get a nontrivial a-Dirac-harmonic map as above. [

By Theorem 4.6, for any « > 1 sufficiently close to 1, there exists an a-Dirac-harmonic map (uq, ¥q)
with the properties
Ea(ua) < Ea(uo), [Yallze =1, (4.14)
and
[¥allwrean < Cp, M, N, Eq(uo)) (4.15)

for any 1 < p < 2. Then it is natural to consider the limit behavior when « decreases to 1. Together
with the blow-up analysis in [8], we have the following existence result.

Theorem 4.7. Let M be a closed Riemann surface and N be a complex n-dimensional analytic Kihler
manifold and a parallel real structure jo be defined in Theorem 1.2. Suppose that there exists a map
ug € C**H(M, N) for some pu € (0,1) such that dimchrlZ)iOO = 1. Then there exists a nontrivial (i.e.,
U £ 0) smooth Dirac-harmonic map (®, V) with ||¥| 2 = 1. In particular, if N has nonpositive curvature,
then the map ® stays in the same homotopy class as ug.

Proof. By Theorem 4.6, we have a sequence of smooth a-Dirac-harmonic maps (uq, , ¥a, ) with (4.14)
and (4.15), where o, \( 1 as k& — oo. Then, by the compactness theorem in [8], there are a constant
€0 > 0 and a Dirac-harmonic map

(D, W) € C®(M,N) x C°(M,SM @ &*TN)

such that
(uak’wak) — ((I)v\p) in CIQOC(M\S) X Clloc(M\S)v
where

S::{weM

liminf E(uq,; Br(z)) > 6—0, Yr > 0}
ap—1 2

is a finite set.
Now, taking xp € S, we see that there exist a sequence zo, — %o, Ao, — 0, and a nontrivial Dirac-
harmonic map (¢,¢) : R? — N such that

(U (Ta, + Ao ), Aok ™ VA Yooy (T, + A 0)) = (6,€) i CR(R?),
as « — 1. Choose any p* > 4, and by taking p = % in (4.15), we get
1%a | Lov ) S C(p*, M, N, E“*(uo))
and
1€l L4 (D (o)) = 0}3131 AZ'Z_IH?/M||L4(DA%R($%))
< Jim Clda o ) i, R)* 777 = 0.

Thus, £ = 0 and ¢ can be extended to a nontrivial smooth harmonic sphere. Since [[1),] L2 = 1, the
Sobolev embedding implies that

19| L2 (ar) = Jim 1Vallzzary = 1.

Therefore, (®,¥) is nontrivial. Furthermore, if (N, /) does not admit any nontrivial harmonic sphere,
then
(tay, Yay,) = (@, %) in C*(M) x CH(M).

Therefore, ® is in the same homotopy class as ug. O
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Appendix A

We use the parallel construction in [10] to construct the solution to the constraint equation for spinors
under a different pull-back bundle «w*T} ¢/N. Since the only thing changed is the bundle we twisted, the
proofs of those nice properties are parallel to those in [10]. For completeness, we give the details in this
appendix.

For every T > 0, we consider the space BE(tg) := {u € Xr | |[u — @ollx, < R} N {ult=o = uo},
where @g(z,t) = ug(x) for any ¢ € [0,T]. To get the necessary estimate for the solution of the constraint
equation, we use the parallel transport along the unique shortest geodesic between ug(x) and 7w o us(z)
in N. To do this, we need the following lemma which tells us that the distances in N can be locally
controlled by the distances in RY.

Lemma A.1. Let N C RY be a closed embedded submanifold of R with the induced Riemannian
metric. Denote by A its Weingarten map. Choose C > 0 such that | Al < C, where

|A]] :=sup{||A, X]| | v € T;‘N, X eT,N, v =1, | X||=1,pe N}

Then there exists 0 < §y < % such that for all 0 < § < 8 and for all p,q € N with ||p — ¢ll2 < 9,

1
d¥(p,q) < WHP = qll2;

where we denote the Euclidean norm by || - ||2 in this section.

In the following, we choose d and R to ensure the existence of the unique shortest geodesics between
the projections of any two elements in B} (tg). By the definition of B} (@), we have

[u(z,t) — to(x,t)]l2 = [lu(z,t) —uo(z)]2 < R
for all (z,t) € M x [0,T]. Then taking any R < 0, we get

d(u(x,t),N) < ”u(xvt) - UO(*T)”Z <9
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for all (z,t) € M x [0,T]. Therefore, u(x,t) € Ns. In particular, 7 o u is N-valued, and
I 0 w)(@, 1) — wo @)l < (0 w)(w, 1) — e, )z + Ju(z,£) — wo(2)]l2 < 26. (A1)
Now, we choose € > 0 with 2e < inj(/N) and § such that
. 1 1
0 < mln{450,46(1 500)}, (A.2)
where Jp, C' > 0 are as in Lemma A.1. From (A.1), we know that for all u,v € B} (uo),

|(mou)(x,t) — (rov)(x,s)|2 < 46 < do.

Then Lemma A.1 and (A.2) imply that

1
dV((mou)(,1), (mow)(z,s)) < Tsallmeouw)(e,t) = (mov)(z,s)|2
— 0o
1 1
<— 4 Zinj(N). A.
1_500(5<6<21nj( ) (A.3)
To summarize, under the choice of constants as follows:
e>0 s.t.2e<inj(N),
1 1
0>0 st.d< min{4(50, 16(1 - (500)}, (A4)
R <9,
we have shown that
u(z,t) € Ns (A.5)
and )
dV((mou)(z,t), (mov)(z,s)) < €< iinj(N) (A.6)

for all u,v € B} (i), € M, and t,s € [0, 7).
Using the properties (A.5) and (A.6), we can prove two important estimates. One is for the Dirac
operators along maps.

Lemma A.2. Choose €, 6, and R as in (A.4). If € > 0 is small enough, then there exists a C =
C(R) > 0 such that

(P )~ PTo" Pt — BT (@)l < Cllur — vslloo(ar e 14 ()|

for any u,v € B} (i), ¥ € Tci(EM ® (mows)*TioN), x € M, and t,s € [0,T].
Proof.  We write fy := mowv, and f; := 7 o u; and define the C* map F : M x [0,1] — N by

F(x,t) = expfo(m)(t exp)fol(w) fi(x)),

where exp denotes the exponential map of the Riemannian manifold N. Note that F(-,0) = fo, F(-,1)
= f1, and t — F(z,t) is the unique shortest geodesic from fo(z) to fi(z). We denote by

Pt17t2 = Ptl,tz (JZ) : T170N|F(90,t1) - T170N|F(x,t2)

the parallel transport in F*T} N with respect to V' "TioN (pull-back of the connection on T} oN) along
the curve v,(t) := (z,t) from v, (t1) to v;(t2) with € M, ¢1,t2 € [0,1]. In particular, Py, = PV="t.
Let ¢ € Fer (XM @ (fo)*Th,0N). We have

(Poa) "B Por — B")o = (ea - 07) @ ((Poa) VI N Po 1 — VIV (1, 0 fo), (A7)
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where ¢ = 9* ® (b; o fo), {bi} is an orthonormal frame of T1 o N, ¥"’s are local C! sections of XM, and
{eq} is an orthonormal frame of T M.
We define local C'! sections ©; of F*T; oN by

@,(l‘ﬂf) = Pot(l’)(bl o fo)(.T)
For each t € [0, 1], we define the functions Tj;(-,t) := T;(-,t) by

(Po.) "' ((Ve, oV O) (2, 1)) = Z i (2,1)(bj © fo)(x). (A.8)

So far, we only know that Tj;’s are continuous. In the following, we perform some formal calculations
and justify them afterward. By a straightforward computation, we have

1((Po,1) VLT NPy — VTN (b, 0 fo) ()]
= [[(Po,) " (VE T0N0,) (2, 1)) — (Poo) " (VE 710N ©,)(x,0))|2

= ‘ )(x) *ZTi]‘(w,O)(bjofO)(m)
Z i (2,1) = Tij(x,0))?

- zj: ( /0 dt‘trTij(x,t)dr>2. (A.9)

Therefore we want to control the first time-derivative of T;;. Equation (A.8) implies that these time-
derivatives are related to the curvature of F*T; oN. More precisely, for all X € T'(T'M), we have

35 (

(P (TE e )
=G| (Po) (EE T e )
=GP P (TR T e 1)
= Po) | (P (TR T O w4 1)
= (Po) (Ve 0NV N0y ). (A.10)

Now, let us justify the formal calculations (A.9) and (A.10). Combining the definition of ©; as parallel
transport and a careful examination of the regularity of F', we deduce that ( I;*T“’NVE( Tl’ON@i)(:c,r)
exists. Then (A.10) holds. Together with (A.8), we know that T;;’s are differentiable in . Therefore,
(A.9) also holds. We further get

F*Tl,gN F*Tl,()N
2 vX CF
ot’ (£ X] ’

:RF*TLON(; )@ —RT10N<dF<§> dF (X ))@Z,

since V7, 2 10N, = 0 by the definition of ©; and [2,X]=0.

:RF*TLON((? )@ +VF Ty, 0N F Ty gNe VF T ON@
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This implies
2 d . 2
Tyen) =[5 @@ o)

t=r

> (i

t=r

F*Ty 0N *
=V, " Ve, N o) (@, )|

€

2

= RTl,ON <dF(z’r) (;) R dF(LT)(ea)) @1(35, T‘)
< Cil|dF e ) (Ol dF e 2 (ea) 1,

where C only depends on N.
In the following, we estimate ||dF(, ,y(0;)|| and |[dF(, ) (eq)]|. We have

7] _
AP Oler) = 35| (@bt ex07 k) Ala) =<0,
t=r
where c(t) := expy, ;) (t exp}fﬂl(x) fi(x)) is a geodesic in N. In particular, ¢ is parallel along ¢ and thus
[/(r)]l = [I¢/(0)]| = || exp} i,y f1(x)|]. Therefore, we get
[dF @, (D)l = | exp oy Fr(@)]| < d¥ (fol), fi(2)) < Collur — vsl|coarra),

where we have used Lemma A.1 and the Lipschitz continuity of w. Moreover, there exists a C3(R) > 0
such that ||dF(, ) (eq)|| < C3(R) for all (x,r) € M x [0,1]. Thus, we have shown

> (45

J

2
Tm»(z,t)) < CYC3C5 (R s — valBogar e

t=r
for all (z,t¢). Combining this with (A.7) and (A.9), we complete the proof. O

The other one is for the parallel transport.
Lemma A.3. Choose €, §, and R as in (A.4). If € > 0 is small enough, then there exists a C = C(e)
> 0 such that
[|[Preto et prott Z — Z|| < Cllus — vslco(arra | 2]
for all Z € Ty oN|yy(a), u,v € BE (o), x € M, and t,s € [0,T).
Consequently, we also have the following lemma.

Lemma A.4. Choose ¢, &, and R as in (A.4). For u,v € BL(uo) and s,t € [0,T], the operator norm
of the isomorphism of Banach spaces

PUstt le,p(zM X (71' e} Us)*TI,ON) — FWl,p(ZM & (7'(' o ut)*Tl,ON)
is uniformly bounded, i.e., there exists a C = C(R,p) such that [[P"""t||p(w1owiry < C for all u,v
€ BL(io), » € M, and t,s € [0,T].

The proofs of these two lemmas only depend on the existence of the unique shortest geodesic between
any two maps in B} (i), which has already been shown in (A.6). So we omit them here. Besides, by
Lemma A.2, one can immediately prove the following lemma by the min-max principle.

Lemma A.5. Assume that dimerr(ETf’OO) = 1. Choose €, 0, and R as in Lemma A.2. If R is small

enough, then
TOoUL

dimgker(D; o) =1
and there exists a A = L A(uo) such that
#{spec(D1o") N [-A A} =1
for any u € BL(ig) and t € [0,T], where A(ug) is a constant such that

spec(B1 ) \ {0} € R\ (~A(uo), Auo))-
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Once we have the minimality of the kernel in Lemma A.5, we can prove the following uniform bounds
for the resolvents, which are important for the Lipschitz continuity of the solution to the Dirac equation.

Lemma A.6. Assume that we are in the situation of Lemma A.5. We consider the resolvent
R(A, B)ﬂout) Ip2 — T'p2 of ]Z)mut Iyiz2 — T'p2. By the LP estimate (see [4, Lemma 3.3]), we
know the restriction
RO\ DTY") i Toe = Ty
is well-defined and bounded for any 2 < p < co. If R > 0 is small enough, then there exists a C' = C(p, R)
> 0 such that sup|_a [[R(A, Dmut)HL(Lp,Wl,p < C for any u € BL(tp) and t € [0,T).

Now, by the pI‘Q]eCtOI‘ of the Dirac operator, we can construct a solution to the constraint equation
whose nontriviality follows from the following lemma.

Lemma A.7. In the situation of Lemma A.5, for any fized u € Bh(tio) and any o € ker(D™) with

lollLz = 1, we have
1 -
Va <l <1

where YUt = PU0Uahy = ™ 4 oh2 with respect to the decomposition T 2 = ker( mu') @ (ker( 7TOu'))J-

In Section 3, to show the short-time existence of the heat flow for a-Dirac-harmonic maps, we need
the following Lipschitz estimate.

Lemma A.8. Choose § as in (A.4), € as in Lemmas A.2 and A.3, and R as in Lemmas A.5 and A.6.
For any harmonic spinor g € ker(lﬁ?fo), we define

_ . 1 U
Blur) =3t =~ [ RIS P
Y

for any u € BE (o), where ~y is defined in the Section 2 with A = %A(uo), In particular,
Blur) € ker(BT5) C Toa(EM @ (0 ) Ty o).

We write

— (u 7(“:&)
vlu) = vl ) = e

Let 1 (uz) be the sections of SM such that ¥(u;) = A (us) @ (04 omouy) for A=1,...,q. Then there
exists a C' = C(R,€,19) > 0 such that

[P ) () — (o) (@) | < Cllue — valleoarzn) (A-11)

and
[ () () = ¥ (vs) (@) < Cllur = s llco(arma) (A.12)
for all u,v € BE(up), A=1,...,q, v € M, and s,t € [0,T].

Proof.  Using the following resolvent identity for two operators D; and Ds:
R(A, D1) — R(A\,D2) = R(A\, Dy) o (D1 — D2) o R(\, D2),
we have

P () - 9(v,)

R()\, put,vsﬂ);oout (Put,,vs)—l)(pumvs Puo,utwo _ puosvs 1/)0)

i),
1 TOUL U,V TOVs Uo,Vs
= o [ (ROPU DT (P ) = ROVDTS )P
1 v
1 UtV ToUL [T Ut Vs PUO,U wp,v
27/R Ptsw (Pts) )(Pt,spmtwofpo,swo)
y



Jost J et al. Sci China Math  April 2025 Vol. 68 No.4 937

1 TOUL Wy v Us TOUL wy v ﬂové TOVg WO .V
*%/(RMP““W (PUeve) ™) o (PUevPIG" (PUo) ™1 = PTG") o RO\ PT")) P th,

where « is defined in (2.11) with A = (uo) Therefore, for p large enough, we get

[P ) = () )
< Cyf[Pre =

WLp (M)

<Oy

/ R(A, P PO (Prova) =Ly Prevs pUotegs, — PUO’UWO)H
8

Wie (M)

+ Cy

/ (R(A, PUevs P (Puosve) =Ly o (Puovs Tt (puesve) =t — o)
,

R()\, E”OUS))Puo,vsd}O H

Wt (M)

02 / HR()‘ Put vleﬂ'Out (Put vs) )(Put,vsPuO,Ut¢0 _ Puo’vsdjo)”Wl-P(NI)

+Cp [ ICRO Prens ™o (pre) ) o (Pre 7 (pre) L )

o R(A, mﬂ—ovs))PU()'US’(/JOHWI’P(M)
< G sup [[R(A, PUove P70 (PU0 ) ) [ Lo iy [P0 PRy — PO afo]| o

Im(y)

+ C3 Su(p) [IR(A, PUhUSlD‘ﬂ'Out (Put,vs)fl)”L(Lp,WLp) Su(p) IR(), lpﬂovs)
Im(y

|| PUevs P (P ) T — DT | e, oy (| PO o Lo

Now, we estimate all the terms on the right-hand side of the inequality above. First, by Lemmas A.6
and A.4, we know that all the resolvents above are uniformly bounded. Next, by Lemma A.2, we have

|| P ]D”"“t (Putyvs)71 _ lp”"vs

L(Lr,W1tr)

Lwte,rry < C(R)|lug — vs | co(ar,ray-

Finally, by Lemma A.3, we obtain

[| PUevs PUottahg — PUsahg || Lo < Ce,%0)||ue — vsllcoar,ray-
Putting these together, we get (A.11).
Next, we want to show the following estimate which is very close to (A.12):
19 (ue) () = & (vs) (@) | < C(R, €,300) [ue = vsllcoqarzo)- (A.13)
In fact, we have
19 (ue) () = &% (v5) (@)

< Ml (ue) (@) = P(vs) (@) 2, MR

<P (ue) () = 9 (vs) (@) 2, moma + 1P 1) (ue) () — () (2) | 2, Mo

= [P (ur) () = §(0) (@) |20 MO0, (o) N

+HP”‘“”“ b(ur) (@) = 9 (ur) (@) ||, aroms
C(R, €, v0)[lue — vsllcoarrey + 1P (ue) (@) — () (@) |2, mroms-

It remains to estimate the last term in the inequality above. To that end, let

() = XD o) (M XDy (T 0 0s(2)), 7€ [0,1]

be the unique shortest geodesic of N from (7 owus)(x) to (mowv,)(x). Let X € T, )N be given and denote
by X (r) the unique parallel vector field along v with X (0) = X. Then we have

P X — X = X(1) - X(0) = A o _5d§ = A I[(/y’(r),X(’r))dT
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Therefore,

[P X — X|lrs < C1 sup |7/ (r)[v sup | X(r)lx = Cil' O) w1 X[,
r€[0,1] r€(0,1]

where IT is the second fundamental form of N in R? and C; only depends on N. Using (A.3) and the
Lipschitz continuity of m, we get

7' (0) v < @V (7 0 ue)(2), (1 0 vs)(2)) < Collue(z) — vs(@)]|rs

and
[P X — X||re < Cslue(z) — vs(@)||ra || X || -

This implies B -
[P h(ug) () — () (7) |2, mers < C(R, €, %0)|ur(x) — vs(2)||Ra-

Hence, (A.13) holds.
Now, using (A.11) and (A.13), we get

1 () () — 6 (0 (@)
[P @) A )) | @) 9w @)
[o(ulze ~ 9wllze 19wl 9z

P oo
S WG 022 — 1) o1

Ut x—_Avs x
IW( )”L [ (ue) () = 9 (vs) (@)

L @)
IO

Alug) (z b4 () (x
H?ﬁ( S)”L 9% (ue) (x) — 7 (vs) (@)

P w)@)
NI

Aut T 7AUS T
IW( )”L [ (ue) () — 7 (vs) (@)

A (u) () 1
) (Ilw(ut)llelw(vs)Lz )z

Then the inequality (A.12) follows from Lemma A.7 and (A.13). This completes the proof. O

19 (vs)llzz = 1P (ue) | 2|

1P 1) (ur) — b (vs) [ 2

>C(R7 € o) [[ut — vsllco(ar ra).-



