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Abstract. In this paper, we first prove a topological obstruction for a four-dimensional
manifold carrying an Einstein metric. More precisely, assume (M, g) is a closed Einstein
four-manifold with Ric = ρg. Denote by K the sectional curvature of M . If K ≥ δ ≥
2ρ−√

5|ρ|
6 (or K ≤ δ ≤ 2ρ+√

5
6 ) for some constant δ, then the Euler characteristic χ and

the signature τ of M satisfy

χ ≥
(

3

8 (1 − 3δ/ρ)2
+ 3

2

)
|τ | .

Our second result is a rigidity theorem for closed oriented Einstein four-manifolds with
positive sectional curvature. Assume λ1 is the first eigenvalue of the Laplacian of an oriented
closed Einstein four-manifold (M, g) with Ric = g. We show that M must be isometric to a
round 4-sphere or CP2 with the (normalized) Fubini-Study metric if the sectional curvature
bounded above by 1 − 4

9λ1+12 (or bounded below by 2
9λ1+12 ).

1. Introduction

A fundamental problem in Riemannian geometry is to determine whether a four-
manifold M carries an Einstein metric. There are several well known topological
obstructions for M carrying an Einstein metric. Denote by χ, τ and K the Euler
characteristic, signature and sectional curvature ofM . Berger [3] proved anEinstein

The first author is partially supported by National Natural Science Foundation of China
(Grant No. 11601442). The second author is partially supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 11971358, 11801420) and the Youth Talent Training
Program of Wuhan University. The second author would like to thank the Max Planck Insti-
tute for Mathematics in the Sciences for good working conditions when this work carried
out. Both of the two authors want to thank the anonymous referee for a very careful reading
and for suggesting corrections.
Q. Cui: School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan,
China. e-mail: cuiqing@swjtu.edu.cn

L. Sun (B): School ofMathematics andStatistics,WuhanUniversity,Wuhan 430072,China.
e-mail: sunll@whu.edu.cn

L. Sun:HubeiKeyLaboratory ofComputational Science,WuhanUniversity,Wuhan430072,
China

Mathematics Subject Classification: 53C25 · 53C24

https://doi.org/10.1007/s00229-020-01217-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-020-01217-y&domain=pdf
http://orcid.org/0000-0002-8842-2296


270 Q. Cui, L. Sun

four-manifold must have χ ≥ 0, and χ ≤ 9 provided K > 0. Hitchin [18] showed

that if M is a closed Einstein four-manifold, then χ ≥ 3
2 |τ |, and χ ≥ ( 3

2

) 3
2 |τ | if

one further assume K ≥ 0. Gursky and Lebrun [17] proved that a closed oriented
Einstein four-manifold with K ≤ 0 must have χ ≥ 15

8 |τ |, and χ > 15
4 |τ | if M

is not half-conformally flat and K ≥ 0. Costa [12] established that an oriented
closed Einstein four-manifold with Ricci curvature ρ < 0 and K ≥ 2/3ρ satisfies
χ ≥ 15

8 |τ | .
Inspired by the above results, we obtain a new obstruction for a four-manifold

carrying an Einstein metric.

Theorem 1.1. Let M be an oriented closed Einstein four-manifold with sectional

curvature K and Ricci curvature ρ. If Kmin ≥ δ ≥ 2ρ−√
5|ρ|

6 (or Kmax ≤ δ ≤
2ρ+√

5|ρ|
6 ), then

χ ≥
(

3

8 (1 − 3δ/ρ)2
+ 3

2

)
|τ | .

Remark 1.1. • If Kmin ≥ 0 (or Kmax ≤ 0), then we have χ ≥ 15
8 |τ |. Thus, we

generalize the results in [17,18].
• If ρ > 0 and δ = ρ/6, then we have χ ≥ 3 |τ |. Note that for CP2 with the
standard Fubini-Study metric, we have Kmin = ρ/6 and χ = 3 |τ |.

• If ρ < 0, our assumption becomes Kmin ≥
(
2+√

5
)
ρ

6 (or Kmax ≤
(
2−√

5
)
ρ

6 ),

which is also weaker than Costa’s hypothesis Kmin ≥ 2ρ
3 .

• If 3δ = ρ, M has constant curvature, τ = 0. The equality is trivial.

Another important problem concerning four-manifolds is to classify themwhen
they are Einstein and satisfy additional curvature conditions. This problemwas first
studied by Berger [2,3]. After that, numerous classification results under different
curvature conditions have emerged. For instance, Micallef and Wang [20] proved
that an Einstein four-manifold with nonnegative isotropic curvature is locally sym-
metric. Brendle [5] generalized Micallef and Wang’s result to higher dimensions,
and he also proved rigidity theorem for an Einstein manifold with positive isotropic
curvature. Using similar methods, Brendle and Schoen [6,7] proved the differential
sphere theorem. Wu [24] showed that an Einstein metric on a four-manifold with
half nonnegative isotropic curvaturemust beKähler–Einstein if it is not conformally
flat. Xu and Gu [25] obtained rigidity results under the assumption that the scalar
curvature is pinched by sectional curvatures. Recently, Diógenes and Ribeiro Jr.
[15] showed a closed oriented four-manifold M with sectional curvature 0.16139-
pinched must be definite, and very recently, Diógenes, Ribeiro Jr. and Rufino [16]
showed M must be homeomorphic to S4 or CP2 if it is half conformally flat and
has sectional curvature 0.049-pinched.

If we restrict our attention to oriented Einstein four-manifolds with positive
sectional curvatures, we have much fewer examples. Actually, the only known
examples are the standard 4-sphere S4 and the complex projective space CP2 with
the Fubini-Study metric up to rescaling. Therefore, it is natural to conjecture:
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Conjecture. [26]The only oriented Einstein four-manifolds with positive sectional
curvature are the standard four-sphere S4 and the complex projective space CP2

with the Fubini-Study metric up to rescaling.

In 2000, Yang [26] gave a partial answer to the above conjecture. He proved
that oriented Einstein four-manifolds with Ric = g and sectional curvature

K ≥ 1
120

(√
1249 − 23

)
≈ 0.102843 are half-conformally flat, and thus (cf. [4])

are isometric to S4 or CP2 up to rescaling. Later, Costa [12] relaxed Yang’s condi-

tion to K ≥ 2−√
2

6 ≈ 0.0976. Recently, Wu [22,23] and Ribeiro Jr. [21] indepen-
dently further relaxed this condition to K > 1

12 ≈ 0.0833. We introduce the first
eigenvalue of Laplacian λ1 and obtain the following rigidity theorem.

Theorem 1.2. Assume (M, g) is a closed oriented Einstein four-manifold with
Ric = g, and λ1 is the first eigenvalue of Laplacian. Then M must be a round
4-sphere S4 or CP2 with the standard Fubini-Study metric if one of the following
conditions holds:

(i) |x | <
(
1 + 3λ1

2

) ( 2
3 − a

)
;

(ii) the maximum of sectional curvature Kmax < 1 − 4
9λ1+12 ;

(iii) the minimum of sectional curvature Kmin > 2
9λ1+12 .

Here a = W1212, x = W1234 are Weyl curvatures defined in (2.1).

Remark 1.2. • Since for a closed four-manifold (M, g), Ric ≥ g implies λ1 ≥
4/3 (cf. [19]), and moreover, if g is Einstein, λ1 = 4/3 if and only if M
is isometric to S4 (with sectional curvature ≡ 1/3). Therefore, if M is not
isometric to S4, then λ1 > 4/3. Our lower bound 2

9λ1+12 in condition (iii) is
strictly less than 1/12. Thus, the above theorem generalizes the previous results
in [12,22,23,26], and gets closer to the conjecture.

• When M has harmonic Weyl tensor (without the Einstein condition), Ribeiro

Jr. [21] obtained some rigidity results with the assumption K⊥ ≥ s2

24(3λ1 + s)
,

where K⊥ denotes the mean sectional curvature (see the definition in [21]) and
s denotes the scalar curvature of M .

The following result is an easy consequence of Theorem 1.2.

Corollary 1.3. Assume (M, g) is a closed oriented Einstein four-manifold with
Ric = g. Then M must be a round sphere or CP2 with (normalized) Fubini-Study
metric if one of the following conditions holds:

(i) |x | < 2 − 3a;
(ii) the maximum of sectional curvature Kmax < 5

6 ;
(iii) the minimum of sectional curvature Kmin > 1

12 ;
(iv) M has 3-positive curvature operator.

For the above corollary, it is worth remarking that
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Remark 1.3. • The conclusion of Corollary 1.3 under condition (iii) and (iv) was
proved by Ribeiro Jr.[21] and Wu [22] (see also [11]). But when Ric = g,
Kmin > 1

12 implies Kmax < 5
6 , and 3-positive curvature operator implies (will

be showed in Sect. 4) |x | < 2 − 3a. Therefore, condition (ii) is weaker than
condition (iii) and condition (i) is weaker than condition (iv).

• Cao and Tran [9] showed if Kmax <
14 − √

19

12
≈ 0.8034, then M has rigidity,

while in our condition (ii), we improve the upper bound to 5/6.
• Wu [22] also showed Kmax < 5

6 − 3
100 implies 3-positive curvature operator,

and 3-positive curvature operator implies Kmin > 1
30 . But it is still unknown

whether Kmax < 5
6 implies (or even equivalent to) 3-positive curvature operator.

We show the relations of the above 4 conditions in the following diagram.

This paper is arranged as follows. In Sect. 2, we set notations and review some
known formulas and facts about Einstein four-manifolds. Section 3 is devoted to
the proof of the topological obstruction theorem Theorem 1.1. Finally, in Sect. 4,
we will prove the rigidity theorem Theorem 1.2 and Corollary 1.3.

Remark 1.4. This paper was finished in May 2018. Very recently, we are informed
that a part of our results was also obtained by Cao and Tran [10] in September 2018
independently.

2. Preliminary

Let (M4, g) be a four-dimensional Riemannian manifold. Let {e1, e2, e3, e4} be
an oriented local orthonormal frame of T M . Denote by

{
η1, η2, η3, η4

}
the dual

frame of {e1, e2, e3, e4}. Set Ri jkl := R(ei , e j , ek, el). Notice that the Hodge star
operator ∗ : �2T ∗M −→ �2T ∗M satisfies ∗2 = 1, and so we get a decompo-
sition �2T ∗M = �+M ⊕ �−M associated with the eigenvalue +1 and −1 of ∗
respectively. It is easy to check that

ω±
1 :=

√
2

2

(
η1 ∧ η2 ± η3 ∧ η4

)
∈ �±M,

ω±
2 :=

√
2

2

(
η1 ∧ η3 ± η4 ∧ η2

)
∈ �±M,
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ω±
3 :=

√
2

2

(
η1 ∧ η4 ± η2 ∧ η3

)
∈ �±M.

Moreover,
{
ω±
1 , ω±

2 , ω±
3

}
forms a local orthonormal frame of �±M . Now we get

the following decomposition,

R =
⎛
⎜⎝

S

12
Id+W+ B

BT S

12
Id+W−

⎞
⎟⎠ ,

where S is the scalar curvature,

B = 1

2

⎛
⎝

˚Ric11 + ˚Ric22 ˚Ric23 − ˚Ric14 ˚Ric24 − ˚Ric13
˚Ric23 + ˚Ric14 ˚Ric11 + ˚Ric33 ˚Ric34 − ˚Ric12
˚Ric24 + ˚Ric13 ˚Ric34 + ˚Ric12 ˚Ric11 + ˚Ric44

⎞
⎠ ,

and

W± =
⎛
⎝W1212 ± W1234 W1213 ± W1242 W1214 ± W1223
W1213 ± W1242 W1313 ± W1342 W1314 ± W1323
W1214 ± W1223 W1314 ± W1323 W1414 ± W1423

⎞
⎠ .

ByBerger’s curvature decomposition [2],without loss of generality,wemay assume

W± =
⎛
⎝W1212 ± W1234 0 0

0 W1313 ± W1342 0
0 0 W1414 ± W1423

⎞
⎠ ,

and W1212 ± W1234 ≥ W1313 ± W1342 ≥ W1414 ± W1423. Thus

B = 1

2

⎛
⎝

˚Ric11 + ˚Ric22 0 0
0 ˚Ric11 + ˚Ric33 0
0 0 ˚Ric11 + ˚Ric44

⎞
⎠ .

For simplicity, write

a = W1212, b = W1313, c = W1414, x = W1234, y = W1342, z = W1423.

(2.1)

By the Bianchi identity and the tracelessness of W , we have

a + b + c = 0, x + y + z = 0.

For closed Einstein four-manifold M (with Ric ≡ ρg), B ≡ 0. Let χ(M) and
τ(M) be the Euler characteristic and signature of M . We have the Gauss–Bonnet–
Chern formula [1],

8π2χ(M) =
∫
M

(
2ρ2

3
+ ∣∣W+∣∣2 + ∣∣W−∣∣2) ,
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the signature formula [4],

12π2τ(M) =
∫
M

(∣∣W+∣∣2 − ∣∣W−∣∣2) ,

and Bochner formula [13],

1

2
�

∣∣W±∣∣2 = ∣∣∇W±∣∣2 + 2ρ
∣∣W±∣∣2 − 18 detW±.

If we write α = (a, b, c), β = (x, y, z), then we have

∣∣W+∣∣2 + ∣∣W−∣∣2 = 2
(
|α|2 + |β|2

)
,

∣∣W+∣∣2 − ∣∣W−∣∣2 = 4 〈α, β〉 .

Therefore, the Gauss–Bonnet–Chern formula and signature formula become

∫
M

(
ρ2

3
+ |α|2 + |β|2

)
= 4π2χ(M), (2.2)

∫
M

〈α, β〉 = 3π2τ(M). (2.3)

3. A topological obstruction

In this section, we will give the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose the sectional curvature is bounded from below (or
above) by δ, and write

α̃ = (a + ρ/3 − δ, b + ρ/3 − δ, c + ρ/3 − δ) .

We view α̃, β as two vectors in Euclidean 3-space. If we put initial points of α̃ and
β to the origin, then the end points of α̃, β lie in the planes

{x + y + z = ρ + 3δ} and {x + y + z = 0} .

Moreover, note that all the components of α̃ have the same sign. An elementary
geometric calculation gives

|〈α, β〉| = |〈α̃, β〉| ≤
√
2

3
|α̃| · |β| .

Combined with (2.3), this gives

3π2 |τ(M)| ≤
√
2

3

∫
M

|α̃| · |β| . (3.1)

On the other hand,

|α̃|2 = |α|2 + 3
(ρ

3
− δ

)2
.
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Therefore, (2.2) yields,∫
M

(
|α̃|2 + |β|2

)
+ δ(2ρ − 3δ)Vol(M) = 4π2χ(M). (3.2)

If ρ = 3δ, M has constant curvature, which implies τ(M) = 0. Otherwise, suppose

ρ �= 3δ, and define a constant ε = ρ2 + 4(ρ − 3δ)2

4(ρ − 3δ)2
. It is easy to check that ε ≥ 6

5
with our assumptions. The inequalities

|β|2 ≤ |α|2 ≤ 6
(ρ

3
− δ

)2
,

together with (3.1) and (3.2) yield,

4π2χ(M) = δ(2ρ − 3δ)Vol(M) + ε

∫
M

(
2

3
|α̃|2 + |β|2

)

+
∫
M

[(
1 − 2ε

3

)
|α̃|2 + (1 − ε) |β|2

]

=
(

ρ2

3
− 2ε(ρ − 3δ)2

9

)
Vol(M) + ε

∫
M

(
2

3
|α̃|2 + |β|2

)

+
∫
M

[(
1 − 2ε

3

)
|α|2 + (1 − ε) |β|2

]

≥
(

ρ2

3
− 2ε(ρ − 3δ)2

9

)
Vol(M)

+ 4ε√
6

∫
M

|α̃| · |β| +
(
2 − 5ε

3

) ∫
M

|α|2

≥ 3ε

2
π2 |τ(M)| +

(
ρ2

3
− 2ε(ρ − 3δ)2

9

)
Vol(M)

+ 5

3

(
6

5
− ε

) ∫
M

|α|2

≥ 3ε

2
π2 |τ(M)| +

(
ρ2

3
− 2ε(ρ − 3δ)2

9

)
Vol(M)

+
(
4

3
− 10ε

9

)
(ρ − 3δ)2Vol(M)

= 3ε

2
π2 |τ(M)| = 3

(
ρ2 + 4(ρ − 3δ)2

)
8(ρ − 3δ)2

× 4π2 |τ(M)| .

The conclusion follows immediately. ��
Remark 3.1. If ρ > 0 and W± �= 0, Costa [12] showed that

Kmin <
2 − √

2

6
ρ, Kmax >

2 + √
2

6
ρ,
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and in this case,

χ(M) >

3

(
1 + 4

(
1 − 3δ

ρ

)2)

4

(
2

(
1 − 3δ

ρ

)2 − 1

) |τ(M)| ,

where δ = Kmin or δ = Kmax.

4. Rigidity result

Recall that in Sect. 2, by using Berger’s curvature decomposition, we obtained

W1212 ± W1234 ≥ W1313 ± W1342 ≥ W1414 ± W1423. (4.1)

With the notations in (2.1), the following inequalities can be easily derived from
(4.1):

a ≥ b ≥ c, |x | ≤ a.

We first prove the following lemma which is actually more general than Theorem
1.2.

Lemma 4.1. Assume (M, g) is a closed orientedEinstein four-manifoldwith Ric =
g, λ1 is the first positive eigenvalue of the Laplacian. If

3
(
a2 − x2

)
− (3λ1 + 4) a + 2λ1 + 4

3
> 0, and a ≤ 1

3

(
1 + 3λ1

4

)
, (4.2)

then M must be a round sphere or CP2 with the standard Fubini–Study metric.

Proof. One can use the trick of evaluating�
(∣∣W±∣∣ + ε

)α
(ε > 0 constant) instead

of �
∣∣W±∣∣α if α < 2. At the end, one lets ε → 0 and get the desired result. Thus,

we will omit ε and calculate directly. Here we outline the proof.
Suppose M is not half conformally flat. We have

∫
M

∣∣W+∣∣1/3 > 0,
∫
M

∣∣W−∣∣1/3 > 0.

Choose r > 0 such that ∫
M

∣∣W+∣∣1/3 = r
∫
M

∣∣W−∣∣1/3 .

By the Bochner formula and refined Kato’s inequality (cf. [8])

∣∣∇W±∣∣ ≥
√
5

3

∣∣∇ ∣∣W±∣∣∣∣
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we obtain,

�
∣∣W±∣∣1/3 = 1

3

∣∣W±∣∣−5/3
(∣∣W±∣∣� ∣∣W±∣∣ − 2

3

∣∣∇ ∣∣W±∣∣∣∣2)

= 1

3

∣∣W±∣∣−5/3
(
1

2
�

∣∣W±∣∣2 − 5

3

∣∣∇ ∣∣W±∣∣∣∣2)

≥ 2

3

∣∣W±∣∣1/3 (
1 − 9

∣∣W±∣∣−2
detW±)

.

Therefore,

0 = 1

2

∫
M

�
(∣∣W+∣∣2/3 + r

∣∣W−∣∣2/3)

≥
∫
M

[∣∣∣∇ ∣∣W+∣∣1/3∣∣∣2 + 2

3

(
1 − 9

∣∣W+∣∣−2
detW+) ∣∣W+∣∣2/3]

+
∫
M

[
r2

∣∣∣∇ ∣∣W−∣∣1/3∣∣∣2

+ 2

3
r2

(
1 − 9

∣∣W+∣∣−2
detW+) ∣∣W+∣∣2/3]

= 1

2

∫
M

[∣∣∣∇ (∣∣W+∣∣1/3 + r
∣∣W−∣∣1/3)∣∣∣2

+
∣∣∣∇ (∣∣W+∣∣1/3 − r

∣∣W−∣∣1/3)∣∣∣2
]

+ 2

3

∫
M

[(
1 − 9

∣∣W+∣∣−2
detW+) ∣∣W+∣∣2/3

+ r2
(
1 − 9

∣∣W−∣∣−2
detW−) ∣∣W−∣∣2/3]

≥ 1

2

∫
M

[∣∣∣∇ (∣∣W+∣∣1/3 + r
∣∣W−∣∣1/3)∣∣∣2 + λ1

∣∣∣∣∣W+∣∣1/3 − r
∣∣W−∣∣1/3∣∣∣2

]

+ 2

3

∫
M

[(
1 − 9

∣∣W+∣∣−2
detW+) ∣∣W+∣∣2/3

+ r2
(
1 − 9

∣∣W−∣∣−2
detW−) ∣∣W−∣∣2/3]

≥ λ1

2

∫
M

[∣∣W+∣∣2/3 − 2r
∣∣W−∣∣1/3 ∣∣W+∣∣1/3 + r2

∣∣W−∣∣2/3]

+ 2

3

∫
M

[(
1 − 9

∣∣W+∣∣−2
detW+) ∣∣W+∣∣2/3

+ r2
(
1 − 9

∣∣W−∣∣−2
detW−) ∣∣W−∣∣2/3]

= 2

3

∫
M

[∣∣W−∣∣− 4
3

((
1 + 3λ1

4

) ∣∣W−∣∣2 − 9 detW−
)
r2

− 3

2
λ1

∣∣W+∣∣ 13 ∣∣W−∣∣ 13 r
+ ∣∣W+∣∣− 4

3

((
1 + 3λ1

4

) ∣∣W+∣∣2 − 9 detW+
)]

.
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Now we claim that(
1 + 3λ1

4

) ∣∣W±∣∣2 − 9 detW± ≥ 0.

Without loss of generality, assume W± �= 0 and detW± ≥ 0. Then it is sufficient
to prove

detW±∣∣W±∣∣2 ≤ 1

9

(
1 + 3λ1

4

)
.

On the one hand, assume

b + y = (t − 1)(a + x), c + z = −t (a + x), t ∈ [1/2, 1].
Then

detW+∣∣W+∣∣2 = t (1 − t)

2(t2 − t + 1)
· (a + x)

≤ max
1/2≤t≤1

t (1 − t)

2(t2 − t + 1)
· (a + x)

=a + x

6
.

On the other hand, the Lichnerowicz estimate [19] for the first eigenvalue of Lapla-
cian on a closed four-manifold gives λ1 ≥ 4

3 . Therefore,

detW+∣∣W+∣∣2 ≤ a + x

6
≤ a

3
≤ 1

9

(
1 + 3λ1

4

)
.

Similarly, we get

detW−∣∣W−∣∣2 ≤ a − x

6
≤ 1

9

(
1 + 3λ1

4

)
.

Thus, we obtain

∣∣W−∣∣− 4
3

((
1 + 3λ1

4

) ∣∣W−∣∣2 − 9 detW−
)
r2 − 3

2
λ1

∣∣W+∣∣
1

3
∣∣W−∣∣

1

3 r

+ ∣∣W+∣∣− 4
3

((
1 + 3λ1

4

) ∣∣W+∣∣2 − 9 detW+
)

≥ ∣∣W+∣∣−2/3 ∣∣W−∣∣−2/3

[
2

((
1 + 3λ1

4

) ∣∣W−∣∣2 − 9 detW−
)1/2

((
1 + 3λ1

4

) ∣∣W+∣∣2 − 9 detW+
)1/2

− 3

2
λ1

∣∣W+∣∣ ∣∣W−∣∣
]
r
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≥ ∣∣W+∣∣1/3 ∣∣W−∣∣1/3
[
2

((
1 + 3λ1

4

)
− 3(a − x)

2

)1/2

((
1 + 3λ1

4

)
− 3(a + x)

2

)1/2

− 3

2
λ1

]
r

= 2
∣∣W+∣∣1/3 ∣∣W−∣∣1/3

⎡
⎣

((
1 − 3a

2
+ 3λ1

4

)2

− 9x2

4

)1/2

− 3λ1
4

⎤
⎦ r.

Since r > 0 is constant, we have

∫
M

∣∣W+∣∣1/3 ∣∣W−∣∣1/3
⎡
⎣

((
1 − 3a

2
+ 3λ1

4

)2

− 9x2

4

)1/2

− 3λ1
4

⎤
⎦ ≤ 0.

However, (4.2) implies

((
1 − 3a

2
+ 3λ1

4

)2

− 9x2

4

)1/2

− 3λ1
4

> 0.

Hence,
∣∣W+∣∣1/3 ∣∣W−∣∣1/3 ≡ 0. Because any Einstein metric is analytic [14], we

must have
∣∣W+∣∣ ≡ 0 or

∣∣W−∣∣ ≡ 0, which is a contradiction. ��

The geometricmeaning of the condition “3
(
a2 − x2

)−(3λ1 + 4) a+2λ1+ 4
3 >

0” is not clear, but this condition canbederived from the three conditions inTheorem
1.2, and now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. We first show the relation

(i i i) �⇒ (i i) �⇒ (i).

Since Ric = g, it is easy to see (i i i) implies (i i). If Kmax < 1 − 4
9λ1+12 , we have

a ≤ Kmax − 1

3
<

6λ1 + 4

9λ1 + 12
.

Therefore,

|x | ≤ a <

(
1 + 3λ1

2

) (
2

3
− a

)
.

That is, (i i) implies (i). Thus, we only need to prove our conclusion under condition
(i). By Lemma 4.1, it is sufficient to show (i) �⇒ (4.2).

By condition (i), since λ1 ≥ 4
3 , we have

a <
2

3
≤ 1

3

(
1 + 3λ1

4

)
.
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Then if a < 6λ1+4
9λ1+12 , we have

3
(
a2 − x2

)
− (3λ1 + 4) a + 2λ1 + 4

3
≥ − (3λ1 + 4) a + 2λ1 + 4

3
> 0.

If a ≥ 6λ1+4
9λ1+12 , by condition (i), we also have

3
(
a2 − x2

)
− (3λ1 + 4) a + 2λ1 + 4

3

> 3

(
a2 −

((
1 + 3λ1

2

) (
2

3
− a

))2
)

− (3λ1 + 4) a + 2λ1 + 4

3

= 9λ1(3λ1 + 4)

4

(
2

3
− a

) (
a − 6λ1 + 4

9λ1 + 12

)
> 0.

This completes the proof. ��
At last, we give the proof of Corollary 1.3 .

Proof of Corollary 1.3. Since λ1 ≥ 4
3 , conditions (i),(ii), (iii) are stronger than

conditions (i), (ii), (iii) in Theorem 1.2. It remains to prove our conclusion under
condition (iv). It is sufficient to show (iv) implies (i).

In our notations, 3-positive curvature operator equivalent to

1 + 2c + b − |y| > 0 ⇐⇒ 1 − 2a − b − |y| > 0. (4.3)

Then

• if b + |y| ≥ 0, we have by (4.3), a < 1
2 . Therefore

|x | ≤ a < 2 − 3a.

• if b + |y| ≤ 0, then b ± y ≤ 0. Thus, −(b ± y) ≤ a±x
2 . Consequently,

−(b + |y|) ≤ a+|x |
2 . Thus by (4.3) again, we have

1 − 2a + a + |x |
2

≥ 1 − 2a − (b + |y|) > 0,

which implies |x | < 2 − 3a, i.e., condition (i). ��
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