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Abstract

In this paper, we obtain several new intrinsic and extrinsic differentiable sphere theorems via
Ricci flow. For intrinsic case, we show that a closed simply connected n(> 4)-dimensional
Riemannian manifold M is diffeomorphic to S” if one of the following conditions holds
pointwisely:

nn—1) T n—1
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Here Ky, Ric¥l and Ry stand for the maximal sectional curvature, the k-th weak Ricci
curvature and the normalized scalar curvature. For extrinsic case, i.e., when M is a closed
simply connected n(> 4)-dimensional submanifold immersed in M. We prove that M is
diffeomorphic to S" if it satisfies some curvature pinching conditions. The only involved
extrinsic quantities in our pinching conditions are the maximal sectional curvature Konax
and the squared norm of mean curvature vector |H |>. More precisely, we show that M is
diffeomorphic to S” if one of the following conditions holds:

(1) Ry > (1 — ﬁ) Konax + 1(n—2) |H |2, and strict inequality is achieved at some point;

(n—1)?
Ricl? - n2 ) S S . .
2) > (n — 2)Knax + ‘g |H|”, and strict inequality is achieved at some point;
RiC[z] n(n=3) (& 2 .. . . . .
3) > >S5 (Kmax + |H| ) , and strict inequality is achieved at some point.

It is worth pointing out that, in the proof of extrinsic case, we apply suitable complex orthonor-
mal frame and simplify the calculations considerably. We also emphasize that both of the
pinching constants in (2) and (3) are optimal for n = 4.
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1 Introduction

It is a basic problem in Riemannian geometry to classify closed Riamannian manifolds in the
category of either topology, diffeomorphism, or isometry under some curvature conditions.
Among a huge literature on this problem, the uniqueness of sphere under pinched curvatures
accounts for a large proportion. One of the reasons for studying uniqueness of sphere is the
simpleness of its topology. These uniqueness results are usually called topological sphere the-
orems (in the homeomorphism sense), differentiable sphere theorems (in the diffeomorphism
sense), and isometric (or rigidity) sphere theorems (in the isometry sense).

Suppose M is a closed n-dimensional Riemannian manifold. If » = 2 and M has positive
Gaussian curvature, then one can easily see from Gauss-Bonnet formula that M must be
a topological sphere. Since the differential structure is unique on a 2-sphere, M must be
diffeomorphic to a standard 2-sphere S?. When n = 3, the Riemannian curvature tensor is
uniquely determined by the Ricci tensor. Hamilton [15] showed that if a closed 3-dimensional
manifold has a metric with positive Ricci curvature, then it must be diffeomorphic to a
spherical space form. Moreover, if M is simply connected, M must be diffeomorphic to S3.
Hamilton [16] classified all closed 3-dimensional Riemannian manifold with nonnegative
Ricci curvature. Therefore, in this paper, we focus our attention on the dimension n > 4 and
study sphere theorems with pinched curvatures.

The study of sphere theorems under pinched sectional curvatures goes back to a question
of Hopf. In 1951, Rauch [27] showed that a closed simply connected Riemannian manifold
with globally §-pinched (§ &~ 0.75) sectional curvature is homeomorphic to a sphere. Rauch
also proposed a question of what the optimal pinching constant should be. Berger [2] and
Killingenberg [20] proved that § = 41 is the optimal pinching constant. Since on a sphere of
arbitrary dimension, the differential structure is not necessarily unique, it is natural to ask
that if }l—pinched sectional curvature is necessary for a differentiable sphere? This question
was finally answered by Brendle and Schoen [8] via the Ricci flow.

Another important differentiable sphere theorem via Ricci flow is due to Bohm and Wilking
[3]. They proved that closed manifolds with 2-positive curvature operator are spherical space
forms. Moreover, Berger [2] classified all manifolds with weakly 1/4-pinched curvatures
in the homeomorphism sense. Brendle and Schoen [7] provided a classification, up to a
diffeomorphism, of all manifolds with weakly 1/4-pinched curvatures. For more sphere
theorems under pinched sectional curvatures, we refer the reader to a good survey book of
Brendle [6].

It is well known that the complex projective space CP" with Fubini-Study metric has
exactly pointwise %-pinched sectional curvature (see also Example 3.3). Therefore, Brendle-
Schoen’s theorem is optimal for even dimension. It is natural to study sphere theorems under
other pinched curvature conditions. In 1990’s, Yau collected some open problems and he
wrote in Problem 12 (cf. [34, page 404]):

The famous pinching problem says that on a compact simply connected manifold if
Kin > %K max»> then the manifold is homeomorphic to a sphere. If we replace K,
by normalized scalar curvature, can we deduce similar pinching results?

However, classical examples (see [13, Example 1], see also Example 3.3 in this paper)

show that the pinching constant is at least er; Therefore, the revised version of Yau’s

problem should be considered as a new conjecture which was formulated by Gu-Xu ([13]):
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Conjecture Let (M", g) be a closed simply connected Riemannian manifold. Denote by Ry
the normalized scalar curvature of M". If K,yin > erz Ry, then M" is diffeomorphic to a
standard sphere S".

If Kppinn > (1 - ”+6> Ry, n > 4, Gu and Xu [13] proved M must be diffeomorphic

to a standard sphere, which partially answered Yau’s problem. Moreover, if M is an Ein-
stein manifold, Gu and Xu [32] proved the pinching constant Z:Lé is optimal and gave an
isometric sphere theorem. When the dimension n = 4, Costa and Ribeiro Jr. [10] proved

Yau’s conjecture. They actually used a weaker assumption by replacing sectional curvature

27“2) Ro, M
must be diffeomorphic to S”. However, when we finish this paper, we know from Professor
Hong-Wei Xu that he and his collaborators obtained the same result [14] independently. We
would like to thank Professor Hong-Wei Xu for sending their manuscript [14]. For readers’
convenience, we still give a complete proof of this result in Sect. 3 (see Theorem 3.2).

It is also interesting to study sphere theorems with normalized scalar curvature pinched
by Kpax- Gu and Xu [13, Theorem 1] showed that if Ry > Sn(n ) Kyax, n > 4, then M

is diffeomorphic to a spherical space form. Based on an example of QP?, the authors also
posed a Conjecture (see [13, Conjecture 1]):

by biorthogonal curvature condition. We can prove when K,,;, > <l -

Conjecture Let M"(n > 4) be a closed and simply connected Riemannian manifold. If
Ry > %Kmax, then M is diffeomorphic to S".

We also get a new differentiable sphere theorem in this direction:

Theorem 1.1 Let M" (n > 4) be a closed and simply connected Riemannian manifold. If

24(4/10 =3
RO > (1 - ()> Kinax,

nn—1)
then M is diffeomorphic to S".

Remark 1.1 Under the assumtion

6
R 1—-— K
0>< n(n—l)) max»

we can prove M has positive isotropic curvature, see Remark 3.1. Gu-Xu-Zhao [14] also
obtained this result independently.

For pinched Ricci curvature and sectional curvature, we also have the following sphere
theorem.

Theorem 1.2 Let M" (n > 4) be a closed and simply connected Riemannian manifold. If

Ricld (1 - 6(@—3))1%‘”7

4n—1) n—1
then M is diffeomorphic to S".

Remark 1.2 Gu-Xu-Zhao [14] actually proved M is diffeomorphic to S” when M satisfies
Ric M 3
—_— l — — ) Kimax-
n—1>( 2(n—1)> max
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It is also of interest to study sphere theorems for submanifolds. In recent years, many
authors investigated related problems and plenty of works were obtained (e.g. [1,13,17,
18,22,30-33] and therein). We also get sphere theorems for submanifolds corresponding to
Theorem 1.1 and Theorem 1.2, see Theorem 4.2, Theorem 4.1 and Theorem 4.3. Besides these
results, we use complex orthonormal frames to obtain the following new sphere theorems.
The assumptions of these theorems only involve Ry, Ri 2l K,uy and |H |2.

We prove the following three theorems which are generalizations of Gu-Xu’s results
[13, Theorem 3, Theorem 4], Xu-Gu'’s result [30, Theorem 1.1], Anderws-Baker’s result [1,
Theorem 1], Liu-Xu-Ye-Zhao’s result [22, Corollary 1.2] and Xu-Tian’s result [33, Theorem
1.1].

Theorem 1.3 Suppose M™(n > 4) is a closed and simply connected submanifold of M
satisfying

2 _ nn—72) 5
Ry=|1-—— | K —— |H|",
0‘( n(n—l)) mat G =y 1

with strict inequality at some point, then M is diffeomorphic to S".

Theorem 1.4 Suppose M™(n > 4) is a closed and simply connected submanifold of MV
satisfying

Ricl?

— n2 2
Z(H_Z)Kmux"‘f‘§|H| s
with strict inequality at some point, then M is diffeomorphic to S".

The pinching condition in Theorem 1.4 is optimal. In fact, when M is the space form
FN(c), ¢ > 0, Ejiri [11] obtained a rigidity theorem for minimal submanifolds under the
pinching condition

Ricy > (n —2)c.

Xu-Gu [31] obtained an extension of Ejiri’s results for constant mean curvature submanifolds
in the space form F N (¢) under the condition

Ricy > (n —2) (c+ |H[?) > 0.

They also obtained a topological sphere theorem for general submanifolds in the space form
FN(c), ¢ > 0 under the same pinching condition mentioned above by using Lawson-Simons
theory for stable integral currents [21,29]. Motivated by these facts, the authors posed the
following Conjecture (cf., [31, Conjecture A]):

Conjecture Let M (n > 4) be a closed and simply connected orientated submanifold in the
space form FN (c). If Ricyy > (n — 2) (c + |H|2) > 0, then M is diffeomorphic to S".

Here is a generalization of Gu-Xu’s result [31, Theorem 4.2].

Theorem 1.5 Suppose M™(n > 4) is a closed and simply connected submanifold of MV
satisfying
i o121 —
Ric - nn—73)
2 7 n-=2

with strict inequality at some point, then M is diffeomorphic to S".

(Kmax + 1HI?),
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Remark 1.3 The Bonnet-Myers theorem [25] states that every complete Riemannian manifold
with Ricci curvature bounded from below by a positive constant is compact. For complete
noncompact Riemannian manifold with quasi-positive sectional curvature, the soul theorem
[9,12,26] says that such manifold is diffeomorphic to the Euclidean space. Thus, one can
consider the sphere theorems for complete Riemannian manifolds with similar curvature
pinching conditions in the above theorems.

This paper is organized as follows. In Sect. 2, we list some notations and known facts.
In Sect. 3, we prove some intrinsic differentiable sphere theorems with pinched normalized
scalar curvatures and pinched Ricci curvatures. In Sect. 4, we study a Riemannian mani-
fold immersed into another and give several new extrinsic topological sphere theorems and
differentiable sphere theorems.

2 Preliminaries

In this section, we will fix some notations and list several known facts which will be used in
next two sections.
Let (M", (, )) be a Riemannian manifold, V be the Levi-Civita connection related to
(, ) and R be the Riemannian curvature tensor defined by
R(X,Y):=[Vx,Vy]l—Vixy],, VX, YeTM.
Denote
R(X,Y,Z,W):=(R(X,Y)W,Z).
Define
K(X,Y):=R(X,Y,X,Y), VX, YeTM.
Denote K (X, Y) by K () if X, Y are orthonormal and 7 = span {X, Y}. By the linearity
and symmetry of R, it is easy to check the following identities.
Lemma2.1 Forall X,Y,Z,W € TM and a, b € R, we have
K(X+Y,X-Y)=4K (X,Y),
KX, Y+2)+KX,Y—-2)=2(KX,Y)+ K (X, 2)),
K (aX,bY) =a’b*K (X,Y),
4R(X,Y,X,Z) =KX, Y+2Z2)-K(X,Y - 2), 2.1)
2dR(X, Y, Z,W)=KX+Z,Y+W)+ KX —-Z,Y —W)
+KY+Z,X-W)
+KY-Z,X+W)—KX+Z,Y—-W)
—KX—-Z, Y+ W)
—KY+Z,X+W)—KXY-Z,X-W). (2.2
Identities (2.1) and (2.2) actually were first used by Karcher [19] to give a short proof of
Berger’s curvature tensor estimate.

Let (MY, g) (N > n) be another Riemannian manifold such that there exists an isometric
immersion

f:(M",(,))a(MN,g).
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When we do calculation on the submanifold, we always omit f and also write g as (, ).
Let {e1, ..., ey} be a local orthonormal frame on M such that {e1,...,e,} form a local
orthonormal frame of M. Let {wl, o w”} be the coframe of {ey, ..., e,}. Define R and
K on M similarly as those on M. In what follows, without special explanation, i, j, k,
will always range from 1 to n and «, B, y will always range from n + 1 to N. The second
fundamental form is defined to be

B =hf;.a)’ Qw ®ey.

2
The squared norm of B is |B|*> = Yija (h"‘) . Write H* = 1 3", 1%, the mean curvature

ij
vector is given by H = H%e,, and the (normalized) mean curvature is H = /Y, (H “)2.
The Gauss equation can be written as

Rijur = Riju + Y (h?‘khf;-‘l - hf‘,h‘}‘k) :
o

where R;ji = R(e;, ej, ek, e) and Rijkl = Ro(e;, ej, ek, e). In tensor language, Gauss
equation also can be written as

_ 1 _ 1
R=R"+-) n"oh*:=R"+-BoB, 2.3
+5 Xa: +5 2.3)
where RT means the restriction of R on T M, ® denotes the Kulkarni—-Nomizu product of
two symmetric (0,2)-tensor a and b which defined in local coordinates by
(a®b)jju = aixbji — aibjk — ajibii + ajibik.

Fix pe M, X,Y € T, M, the following notations will be used throughout this paper:

Knin(p) = min K(m), Knax(p) = max K(mw),
xCTyM nCTyM
2 Rijij
Ric(X.Y) =Y R(X.e;.Y,e;), Ricjj=Ric(ej,e;), Ry=—1""
(X,Y) Z,: (X, e i) Ji (ej.ej). Ro nn—1)
[ei1’-~-’eik] :span{eil,...,eik}, Vi<ii<ip<...<iy<mn,
k
. . .k
RicM [ei, ... e;] =) Riciy, Ricll (p)
j=1
= min Ricl] [e,'l, A e[k] (p)s
[e,-] ..... e,‘k]CTpM
where Ricl¥[e;,, ..., e;] is called k-th weak Ricci curvature of [e;,, ..., e; | which was

first introduced by Gu-Xu in [13]. One can also give similar notations as above on M. Since
all our calculations is local (at p), we will always omit the letter “p” in what follows.
Complexify TM to TCM and assume 1, ..., &, is a local orthonormal frame of 7€ M.

Extend R, R, B and (, ) C-linearly and denote by

n
he:=(B(ei, &) ea). Ryi; = Rleiej.51.8)), Ricij =) Ryij.
j=1
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It is easy to check

a o _ pa _
hi; €R. bz =he. RyijeR, ZRW_n(n DRo.
i,j=1

A direct computation via the complex linearity gives the following complex Gauss equation,
fori # j,

I ape _pa pa
Rl]’] Rl]’] + Z <hllh]] ljhfj)

=R;;+IH + ) (H"‘ (fz?;—i—ﬁ‘}’;) + h%hY -
o

— Y-
¥

2
7 ) , 24)

where fzf‘j = h?f — H®$;;5. Therefore, the complex Ricci curvature is given by

, .2
Ric;; E R”;j-—i-(n 1)|H|2+ E ((n—Z)H“h;"l-.— E hf‘k ) 2.5)
o k=1

The curvature operator R : A>TM —> A>T M is defined as follows:

ijij iijj

(RIXANY), ZAW):=R(X,Y,Z,W).

A linear subspace V € TCM is called totally isotropic if g(v, v) = 0, forall v € V. In other
words, forallv = X +/—1Y € V,

IXI* = |¥Y]* = (X,Y) =0.

To each complex 2-plane o € A*TCM the complex sectional curvature K (o) is defined
to be

(R(z Aw), z Aw)

K(o) =
@) |z A w|?

where 0 = spanc{z, w}. It is obvious that K (o) € R. K (o) is called isotropic curvature
if o is totally isotropic. The concept of isotropic curvature was first introduced by Micallef
and Moore [24].

It is easy to check that, for every totally isotropic 2-plane, there exists an orthonormal
four-frame {ey, e2, e3, e4}, such that

0 = spanc {61 + /—1ley, e3 + ﬁm} .
Moreover, by C-linearity of R and (, ), we have
4K (o)
= <72 ((81 + v/ —=lex) A (e3 + ﬁfm)) ,(e1 —v/—1ex) A (e3 — \ﬁle4)>
:<’R(el A e3 —ez/\e4+«/?1(e1 /\€4—|—€2/\€3))
e Ne3 —€2Ae4—«/j1(€1 /\€4+€2/\€3)>

= (R(ej Nes—exy ANeg), el ANes—ex Aey)
+ (R(ey ANeg+ex Ne3), el Aeg+ ex Ae3)
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= R1313 + Ro424 — 2R1324 + Ri414 + R2323 + 2R1423
= Ri313 + Ria14 + R2323 + Roa24 — 2R1234,

where we have used Bianchi identity in the last equality. When M has positive isotropic
curvature, Micallef and Moore proved the following theorem.

Theorem A (Micallef-Moore [23]) Let M be a closed n(> 4)-dimensional Riemannian mani-
fold. Assume for every orthonormal four-frame {e1, e2, e3, ea}, the following inequality holds

Ri1313 + Ri414 + R2323 + Roaza — 2R1234 > 0.

Then mp(M) = 0 for2 < k < [%] In particular, if M is simply connected, then M is
homeomorphic to a sphere.

When M x R has positive isotropic curvature, i.e., (cf. [4])
Ri313 + 2> Ria1a + Ro3o3 + A2 Rosna — 2AR 1234 > 0 (2.6)

for all orthonormal four-frames {ey, e, €3, e4} and all A € [—1, 1], we have the following
differentiable sphere theorem.

Theorem B (Brendle [4]) Let (M, go) be a closed Riemannian manifold of dimension n > 4
such that M x R has positive isotropic curvature. Then the normalized Ricci flow with initial
metric go exists for all time and converges to a constant curvature metric as t — 00.

Remark 2.1 Theorem B is also true if one can verify inequality (2.6) for A € [0, 1]. Actually,
if inequality (2.6) holds for A € [0, 1], then for u € [—1, 0], consider orthonormal four-frame
{e1, e2, €3, —e4}, we have

Ri313 + 112 Ria1a + Razos + 1> Roana — 214 R1234
= Ri313 + 1> Ria1a + Rozos + n? Roana — 2(— )R (eq, e2, 3, —es) > 0.

Seshadri [28] studied the classification of closed Riemannian manifolds with nonnegative
isotropic curvature. When M x R2 has nonnegative isotropic curvature, i.e., (cf. [8])

Ri313 + A*Ria1a + 1> Rosos + A2 1% Roaog — 20 Ri234 > 0, 2.7

for all points p € M, all orthonormal four-frames {ey, ez, e3,e4} C T,M, and all A, u €
[—1, 1], or equivalently M has nonnegative complex sectional curvature (cf. [24, Remark
3.3] or [6, Proposition 7.18]), we have the following classification theorem.

Theorem C (Brendle-Schoen [7]) Let M be a closed, locally irreducible Riemannian man-
ifold of dimension n > 4. If M x R? has nonnegative isotropic curvature, then one of the
following statements holds:

(1) M is diffeomorphic to a spherical space form;
(ii) n = 2m and the universal cover of M is a Kihler manifold biholomorphic to CP™;
(iii) the universal cover of M is isometric to a compact symmetric space.

Remark 2.2 Similar to the remark after Theorem B, this classification theorem is true if we
can verify the condition (2.7) for all four-frame {eq, 2, €3, e4} and all A, u € [0, 1].
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3 Sphere theorems for pinched curvatures

In this section, we will prove the intrinsic sphere theorems listed in the introduction. Before
we prove these theorems, we give a useful lemma.

Lemma 3.1 Let {e1, €2, €3, ea} be any orthonormal four-frame, then we have

12Ri234 =4 Z Rijij — 2 (R1313 + Ria14 + Ro33 + Roana)
I<i<j<4
—(K(e1+e3,e2—es) + K(er —e3,e2+ es)
+ K(ex +e3,e1 +eq) + K(ex — e3, €1 — ea)).

Proof First note that

{el+e3 e1—e3 ex+tey 62—64} {e1+e4 e1 —es e)+e3 62—63}
NGNSV NG B V2 V2 V2T 2
are two orthonormal basises of span {e}, e>, €3, e4}. Therefore, by Lemma 2.1, we have

4 3" Rijij=K(e1+es,e1 —e3) + K(e1 +e3, €2+ ea) + K(e1 +e3, €2 — ea)

I<i<j<4
+ K(e1 —e3,ex+eq)+ K(eg —e3,e0 —es) + K(ex +es, €0 — e4).
3.1
4 Z Rijij =K(e1 +e4,e1 —eq) + K(ey +e4,e2 +e3) + K(eg +e4,e2 — e3)
l<i<j<4

+ K(ey —e4,ex+e3) + K(eg —eq,e2 —e3) + K(ex +e3,e2 — e€3).
(3.2)

Set X =e1,Y =ep,Z =e3, W = ¢4 in (2.2), we have

24R1234

= K(e1 +e3,e2+e4) + K(eg —e3,e2 — e4)
+ K(ex+e3,e1 —ea) + K(ea —e3,e1 + e4)
—K(e1 +e3,e2—es) — K(er —e3,e2 +es)
— K(exte3,e1+eq) — K(ex —e3,e1 —es)

=K(e1 +e3,e1 —e3) + K(ep +e3,e2+es) + K(ep +e3,e2 — es)
+ K(ey —e3,er+e4) + K(eg —e3,ex —eq) + K(ex + eq,ex — eq)
+ K(e1 +e4,e1 —es) + K(eg +es,e2+e3) + K(e1 +e4,e2 — €3)
+ K(e1 —e4,e2+e3) + K(eg —eq,e2 —e3) + K(ex +e3,e2 —e3)
—2(K(e1 +e3,e2 —eq) + K(ep —e3,e2 +e4
+ K(ex +e3,e1 +ea) + K(ea —e3,e1 — eq))
— K(e1+e3,e1 —e3) — K(ex + ea,e2 — ea)
— K(ey +e4,e1 —eq) — K(ez +e3,e2 — €3)

=8 Y Rijij —4(Ri313 + Ruaia + Rooz + Roana)

I<i<j<4

—2(K(e1 +e3,e2 —eq) + K(eg —e3, €2 + e4)
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+ K(ex+e3,e1+e4) + K(ex —e3,e1 — es)).

In the last equality, we have used (3.1) and (3.2). O

The following theorem obtained by Gu-Xu-Zhao [14] independently. We list a proof here
for reader’s convenience.

Theorem 3.2 Let M"(n > 4) be a closed and simply connected Riemannian manifold.
Assume the following pinching condition holds,

K 1 12 R
in>1-——— ,
min W2 —n T 12 0
then M is diffeomorphic to S".

Proof of Theorem Theorem 3.2 By Theorem B, it is sufficient to prove (2.6) holds for every
orthonormal four-frame {ej, 2, 3, e4} and A € [0, 1]. By Lemma 3.1, we have

12 (R1313 + Ro323 + Ri234)
=4 Z Rijij — 2 (R1414 + Ro424) + 10 (Ry313 + R2323)
I<i<j<4
—(K(e1 +e3,e2 —ea) + K(e1 —e3, €2 + e4))
—(K(e2+e3,e1+ea) + K(ea —e3,e1 — e4))
=4 Z Rijij — 2 (R1414 + R2424) + 10 (Ry313 + R2323)

I<i<j<4

—|4 Z Rijij — K(e1 +e3,e2+e4) — K(ey —e3,e2 — eq) — 4R 1313 — 4Roan4

I<i<j<4

—|4 D Rijij—K(ex+e3,e1 —ea) — K(ea — €3, €1 + e4) — 4Ra303 — 4R1414

I<i<j<4
=—4 > Rijij +2(Ruais + Ryza) + 14 (Ri313 + Roana)
l<i<j<4
+ K(ey +e3,e2+e4) + K(eg —e3,e3 — ea)
+ K(ex+e3,e1 —es4) + K(ex —e3, €1 + es),

where in the second equality, we have used (3.1) and (3.2). Thus,

12 (R1313 + R2323 + Ri234)

4 n
> -2 n(n—l)Ro—ZZZRijij_ Z Rijij | +48Kuin

i=1j=5 5<i,j<n
—2[n(m— DRy — 2 x4(n—4) + 1 —4)(n —5)) Kinin]l +48Knin
=2(—nn— 1Ry — (n(n — 1) + 12) Kinin) -

v

Hence, if
12
Kmin > |1 — m Ro,
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we obtain
R1313 + Ro323 + R34 > 0.
Replace e4 by —e4, we obtain

R1313 + R2323 — R34 > 0.

Hence,

Ri313 + R2323 — [Ri234| > 0,
Similarly,

Ri414 + Roa24 — |R1234] > 0.
Therefore,

Ri313 + Ra3o3 + A2 (Ria1a + Roaoa) > (14 22) |Ri234] = 2AR1234.

Our conclusion follows immediately from Theorem B.

[m}

When the dimension n = 4, the following example indicates that our pinching constant

is optimal.
Example 3.3 Consider the Fubini-Study metric on CP™, then we have

RX,Y,X,Y)=1+43[(JX, V),

for every orthonormal two-frame {X, Y}, where J is the complex structure. Let n = 2m,

consider a local orthonormal frame {ey, --- , ey, Je1, -+, Jey}, we have
Rei,ej,ei,ej) =1, VI <i#j<m,
R(ei, Jej,ei,Jej) =1, VI <i#j<m,
R(ei, Jei,ei, Je;)) =4, V1 <i<m,
R(Jej, Jej, Jej,Jej) =1, VI<i#j<m

Therefore,

s=4dmm — 1) +8m =nn+2), Ricy=2m+2=n+2, Kpin=1 Kuux =4,

K n+2 Ricy n—1 n—1Ricy
Ro = = = s Kmin = Ry = )
nn—1) n—1 n—1 n—+2 n+2n-—1
__Ricy n—+2
OTh T T A -
When n = 4, we have
_RiCM 1

1
= —Kmax, Knin = §R0~

0= 73 2

Proof of Theorem 1.1 We begin with the following identity:

n 4 n
n(n—DRo= Y Rijij+2) Y Rijij+2 Y Rijij.

i,j=5 i=1 j=5 I<i<j<4

(3.3)
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Notice that, for A € [0, 1] and ¢ > 0,

2. Riij
I<i<j<4
€
= Z Rijij — 2010 ((R1313 + Ro323) + 2% (R1a14 + Roana) — 2AR1234)
l<i<j<4

&

— ((R R A2 (R Ros4) — 2AR
20+ ((R1313 + R2323) + A” (Ri414 + Ro424) 1234)

+

= Ri212 + R3434 + (1 ) (R1313 + R2323)

&
S 2(1422)
gL
1+22

(Ri313 + R2323) + A% (Ria14 + Roaoa) — 2AR1234) - 349

g2
+ {1 = 7 ) (Ria14 + Roaza) + Ri234

T 2(1422)
&

+ 2(1 4 A2) (

According to Lemma 3.1, replace e4 by —e4, we obtain

12R1234 = — 4 (R1212 + R3434) — 2 (R1313 + Ri414 + R2323 + Roa24)
+ (K(e1 +e3,e2+eq) + K(eg —e3,e2 — e4)
+ K(ex+e3,e1 —esg) + K(ex —e3,e1 + es)). (3.5)

Therefore, for fixed g9 = 12(+/10 — 3),

&0
R R ]1—— (R R
1212 + R334 + ( 20+ )Lz)> (R1313 + R2323)
+(1 07> (Riats + Roans) + —2_ R
ESE) 1414+ Roaa) + 75 Rizsa
— (1= =" ) (Riapz + Rassa)
= 3012 1212 + R3434
e0(3 4+ 1) €0 (312 +1)
+ (1= 22 ) R+ R + [ 1 = ——— 2 ) (Rigis + R
( 6(1+ A2)> (R1313 2323) ( 6(1+22) (Rya14 2424)
g0 (K(e1 +e3,e2 +e4) + K(eg —e3,e0 —eq) + K(ex +e3,e1 —ea) + K(ea —e3, €1 + e4))
+
12(1 4 22)

goh 03+ 1)
<({l—————- ) 2K 1 — —— ] - 2K,
= ( 3(1 + )\42)) max + ( 6(1 +)\,2)> max

£0 (3)»2 + )») 16£0A K ax
(1_ 6(1+2) ) e T na

= (6 — €0) Kmax» (36)
where we have used

g0k 03+ 1) g0 (327 + 1)

]l—-—>0, 1= ——=>0, 1-—
3(14+22) — 6(1_}_)@)

0, Vrelo,1].
6(14212) ~ =5 <101

Thus, (3.3), (3.4) and (3.6) yield
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€0
152 ((Ri313 + R2323) + A% (Ria14 + Roa24) — 2AR1234)

n 4 n
> n(n— 1Ry — (12 = 260)Kmax — | D Rijij +2)_ Y Rijij

ij=5 i=1j=5
>nn—1)Ro — (12 = 260) Kipax — (n —4)(n — 5) Kypax — 8(n — 4) Kypax
=nn— 1Ry — (n*> — n — 260) Kmax- (3.7)
Consequently, the assumption Ry > (1 — %) K,yax combined with (3.7) imply

(R1313 + R2323) + A% (Ri414 + Roana) — 2AR1234 > 0.

Our conclusion follows from Theorem B immediately. O

Remark 3.1 If we take . = 1, &9 = 3 in the above proof, we actually have, when

6
R 1— — | Kiaxs
°>< nm—D>m”

then the isotropic curvature
Ri313 + Ri414 + R2323 + Rodoa — 2R1234 > 0,
which implies that M is homeomorphic to a sphere. One can see from Example 3.3, the

pinching constant <1 — ) is optimal when n = 4.

nn—1)

Proof of Theorem 1.2 Let D be a constant satisfying Ric!*! > 4(n — 1)D. Then

4 n

4(n — 1)D < Riciy + Ricyy + Ricyy + Ricas = Y > Rijij+2 Y Rijij. (3.8)
i=1 j=5 l<i<j<4

Check the proof of Theorem 1.1, we actually have proved that for every A € [0, 1],
Z Rijij <(6 — €0) Knax
I<i<j<4

&0 2
+ — (R + R + A7 (R + R —2AR ,
21+ 22) ((R1313 2323) (Ri414 + Roaps) 1234)

where g9 = 12(+/10 — 3). Combined with (3.8), we obtain
4n —1)D <@ — 1) — 2¢0) Kmax

+ ﬁ ((Ri313 + Ra323) + A7 (Ria14 + Rogoa) — 2AR1234) -
Hence, if
4n—1) 2n—1)
we have
(R1313 + Ro323) + A% (Ria14 + Ro424) — 24 R1234 > 0.
We complete our proof. O
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Remark 3.2 Similar as Remark 3.1, one can take A = 1 and &y = 3 and obtain that, if

Ric¥ | 3 X
B I S ,
4(n—1) 2m—=1 )"

then M has positive isotropic curvature, and is homeomorphic to a sphere.
Moreover, if M is Einstein, we obtain the following

Corollary 3.4 Let M"(n > 4) be a closed and simply connected Einstein manifold. If

3
R 1 — — ) Knax,
0>( 2(!’!—1)) max

then M is isometric (by scaling) to S".

Proof If M is Einstein, then Ric = cg for some positive constant ¢, the normalized scalar

jcl4l . . . ..
curvature Ry = 415}’167 1y~ From Remark 3.2, we know the isotropic curvature is positive.

Therefore, by Brendle’s Theorem ([5, Theorem 1]) we obtain the conclusion. ]

4 Submanifolds with pinching curvatures

In this section, we will prove some sphere theorems for a Riemannian manifold isometrically
immersed into another with some pinching curvature conditions. It is worth pointing out
that our pinching constants in this section also improve Gu-Xu’s corresponding pinching
constants in [13] and [32].

Let R denote an algebraic curvature tensor, for every orthonormal four-frame {e1, e, €3, e4}
and A, u € [—1, 1], we give the following notation,

Tu(R) = Ri313 + A*Ria1s + 11> Rozoz + A2 1* Roaps — 2AR1234) ,

TaT |

and we denote 7, 1 (R) briefly by Z, (R).
Therefore, by Gauss equation (2.3), we have

T(R) =L,(RTY + T, (%B@B). .1

Corresponding Theorem 1.1, we have the following result:

Theorem 4.1 Let M" b_e an n(> 4)-dimensional closed submanifold in an N -dimensional
Riemannian manifold M .

(1) If, pointwisely,

2 -D[- - 2\H?
|B|2<M[Ro—<l L)Km}r"' |

3 CN(N-=1) n—2"

then M has positive isotropic curvature. Therefore, (M) = 0 for 2 < k < [%] In
particular, if M is simply connected, then M is homeomorphic to a sphere.
(2) If, pointwisely,

— _ 2 2
B < NV =D |:Ro - (1 _ 24(/10 3)) I?max] L
3 NN —1) n—1

)

then M is diffeomorphic to a spherical space form. In particular, if M is simply con-
nected, then M is diffeomorphic to S".
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Proof Let D be a constant satisfying N(N — 1)D < Z;szl Rijij. Then a similar algebraic
argument as the proof of Theorem 1.1 gives a similar inequality as (3.7):

67, (RT) >~ N(N =)D — (N® = N — 2¢0) Koo 4.2)

For A = 1, we take g9 = 3. In the proof of [13, Lemma 9], the authors give the following
estimate

1 n?H? )
47, EB@B > 2—|B| . 4.3)

Thus, (4.1), (4.2) and (4.3) yield

1 A 2 - 1 (n*|H? 2
11(R)>8(N(N—1)D—(N — N —6)Kpax) + — —|B|

4\ n—2
1{2N(N—1)|:- ( 6 ) } n? |H|? 2}
= 15— D (1 - ) B | + —1BP}.
4 3 N(N — 1) n—2

Combined with Theorem A, we complete the proof of Claim (1).
For arbitrary A € [0, 1], we take g9 = 12(+/10 — 3). In the proof of [13, Lemma 11], the
authors obtain

1 I12|H|2 2
27, 5B@B > 1 —|BlI*, VYAel0,1] 4.4)
n

Thus, (4.1), (4.2) and (4.4) give

2 2
T,.(R) >é (N(N —1)D — (N? = N — 2410 — 3))1€max) +1 (" 2 |B|2)

2\ n—1
1 [NN=-1 | - 24(V10-3)\ - n?|H|?
BN ROV P O T ) S ATVt §
2 3 N(N —1) n—1
Then Claim (2) follows easily from Theorem B. O

After a similar argument we also have the following two extrinsic sphere theorems corre-
sponding to Theorem 3.2 and Theorem 1.2.

Theorem 4.2 Ler M" b_e an n(> 4)-dimensional closed submanifold in an N -dimensional
Riemannian manifold MV .

(1) If, pointwisely,

|B|2<N2—N+12 i (i 12 i +n2|H|2
3 min N —N+12)7°) T =2

then M has positive isotropic curvature. Therefore, (M) = 0 for 2 < k < [%] In
particular, if M is simply connected, then M is homeomorphic to a sphere.
(2) If, pointwisely,
B2 N —N+12 @ . 12 i +n2|H|2
< — in—\|1—————7—— ,
6 min N -N+12) )T o

then M is diffeomorphic to a spherical space form. In particular, if M is simply con-
nected, then M is diffeomorphic to S".
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Theorem 4.3 Let M" be an n(> 4)-dimensional closed submanifold in an N -dimensional
Riemannian manifold MV .

(1) If, pointwisely,

—14] 2152
8(N —1 Ric,,: 3 - H
|B|2 < ( ) < LChin <1 7) Kmax> 4 n

3 4aN—-1) U 2tn=-D n—2"

then M has positive isotropic curvature. Therefore, (M) = 0 for 2 < k < [%] In
particular, if M is simply connected, then M is homeomorphic to a sphere.
(2) If, pointwisely,

P < AN =D Rich | 6W10-3)) o\, n?H?
- (W10 =3)
3 4(N — 1) N -1 S B

then M is diffeomorphic to a spherical space form. In particular, if M is simply con-
nected, then M is diffeomorphic to S".

Also we have the following corollary corresponding to Corollary 3.4.

Corollary 4.4 Let M" be an n(> {)-dimensional closed Einstein submanifold in an N -
dimensional Riemannian manifold M™ . If, pointwisely,

-4
P < SN =D Ricyi, 3 e V. n2H2
3 4N — 1) 2IN=1) ) "™ n—2"

then M is isometric to a spherical space form. In particular, if M is simply connected, then
M is isometric to S™ (by scaling).

Remark 4.1 Using a similar method, we also can get a sphere theorem under pinched curvature
by Kin. But since the pinching constant is the same as Gu-Xu’s result in [13], we omit here.

Next we will use a complex orthonormal frame to state the proofs of Theorem 1.3, The-
orem 1.4 and Theorem 1.5. One can verify that in suitable complex orthonormal frame, the
calculations will be considerably simplified.

Proof of Theorem 1.3 Letey, - - - , e, be alocal orthonormal frame of T M. For A, 1 € [0, 1],
define

. e1 ++/—1ke . e3 +/—1luey
1= —F 82=—F7——,
V1422 V14 u?

and extend these two vectors to be a local orthonormal frame of T€M. Then a direct com-
putation gives

Ri>15 = R(e1, 2, 81, 82) = I u(R).
We first claim that
n
Z Rij ij = (n* =1 = 2)Kpnax + 2R 13- 4.5)
ij=1
If this is true, then (2.5) and (4.5) give
n
nn—1)Ry = Z Rijz_'f

i,j=1
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=Y Ry+n—-DIHP=Y Y 2

i,j=1 i,j=1 «a

h-
ij

n
_ - 2
<(n* = n =) Kpax + 2R3 +n(n — D [HP = Y~ "

ij=1 «

h-
ij

=% —n —2)Kpax + 2R5i5 +n(n — 1) |HI?

2 n 2
, L o ) )
_2<|H| +Z<H°‘ (h7i+h§i)+h7ih3§_ ‘h%‘ )) DI I
o ij

j=1 «
On the other hand,
2 o (po Lo o o o 2 - o 2
—2(|H] +Z<H (hﬂ+h22)+hlih22— Ao ) DN
o i,j:I o
2
2 o (fa Lo o o o
<-2 (IHI +Z(H <hli+h22)+hlihzi— 7% ))
o
oo 12 2 I2 oo 12 [2g |2
_Z hﬁ +h22 +2h1§ +Z hij
o i, j=3

< —20HP =2 1 (i + i)
o
2 oo 1 . L N2
_Z< +2h7ih§z> — o (i)
o o
o o 1 R R 2
_ 2
=—2[H?-2) H" (h‘;‘I +th) - (1 +- _2> Z(hg‘I +th)
o o

n

2
+

Lo
hli

Lo
hzi

< —

|H|?,
n—1

where in the second inequality, we have used
() _ (it )
2 i=3"; 11" "2

> =

n—2 n—2

n

2

i,j=3

h-
ij

he
ii

2 n
=2
i=3
Therefore, we have
_ n
nn—1)Ry < (n2 —n = 2)Kpnax + 2R 575 + <n(n -1 - m) |H|2,

which implies

_ (n

2R;»5 > n(n—1)| Ry — -2 & +"7_2)|H|2 (4.6)
1212 = 0 nn—1) e —1)2 ’ )

Thus, by the assumption of this theorem and (4.6), we have R|,i5 > 0. Therefore, M x R2
has nonnegative isotropic curvature (see for example [6, Proposition 7.18]). Also by the
assumption, the isotropic curvature of M x R? is positive at some point. Consequently, M
has nonnegative isotropic curvature and positive isotropic curvature at some point. Then M
admits a metric with positive isotropic curvature (see [28]). Therefore, M is a topological
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sphere by Theorem A. But by the classification theorem of Brendle-Schoen (Theorem C), M
must be diffeomorphic to S".

It remains to prove the inequality (4.5). Under the orthonormal frames {e; }, this inequality
is equivalent to

n
Z Rijij = (nz —n—- Z)Enmx + ZIA.,[L <IéT) .
i j=1
Notice that

n 4 n n
Z Rijij =2T;. (RT) +2 Z Rijij — Tru (RT) +ZZZ Rijij + Z Rijij

i j=I l<i<j<4 i=1 j=5 i,j=5
521,\,“ (RT) +2 Z Rijij — IA,;L (RT) + (}12 —n — 12)I€max-
l<i<j<d4

Therefore, it is sufficient to prove

Z lel_] I)L S ( ) = 5I(max

I<i<j<4

A direct computation using (3.5) yields

> Rijij = Tuu(R")

I<i<j<4
- 1
= L P armae
l<i<j<d4 H
<R1313 + A2 Ria1s + 1 Ro3os + A2 Roaos — 2?»Mlé1234)
20 - _ 3+ Au ) _
=(1-—— ) (Rop+Rus) +(1-— " )R
( 31+ )1 +u2)>( 112 + Rasss) ( 3A+ )T+ pd)
322+ ap - 3ut 4+ Ap -
4—(1——2 3 )R1414+<1——2 3 >R2323
3+ 290 + wu?) 314290 + p)
N (1 3022 4+ ap )
3A+ 21 +u2)) T

(K(el +e3,ez+e4)+K(e’| —e3, ez—e4)+K(ez+es el —6’4)+K(€2—€’; el +e4))
6(1+22)(1+ pu?)

( ) 2R +(1_—3+“‘ )ze
371 +x2)(1 +u?) max 3142214 pu2)) "
+

322+ 4 _
(1 St 2)1{,,1“
3(1+ A5 + p?)

3ut 4+ an . 3022 + .
l]l—-———— | K l——m8««——— | K
+( 3<1+A2><1+u2>> +( 30150 1 7)) e

1611 _
6(1 +22)(1 4 p2) "™
:Skmax-

Theorem 1.4 and Theorem 1.5 are easy consequences of the following theorem:
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2
Theorem 4.5 For fixed 0 < ¢ < 1, set §(¢,n) = W%. Suppose M"(n > 4) is a

closed simply connected submanifold of MN satisfying
Ric?!
2

with strict inequality at some point, then M is diffeomorphic to S".

> (n— 1 — &)Kpax +8(e,n) |H|?,

Proof Let {e;} be a local orthonormal frame of TM. For A, u € [0, 1], define

81_614‘«/—1//«32 82_e3+«/—1)xe4 oy = e — v/ —ley len 84_)\6’3—«/—164
NI Vitaz Ji+pz Vit

& =ei, 5<i<n.
Then {g;} is a local orthonormal frame of 7M. Similar as the proof of Theorem 1.3, it is
sufficient to prove R|,j5 > 0 and the strict inequality holds for all frame {e; } and all numbers
A, i € [0, 1] at some point. Ricci curvature formula (2.5) gives
L. .
5 (chli + Rlczi)
Z Ry + Z Rysr | + (n = D |HI?

i#1 i#2

h%| + |hS:

+;Z<("—2)H“ (fl‘fﬁ’%‘z’z)—Z( i+ | 2)) @.7)
o i=1

2i
1 n
— > Ric;;
i=3

n n
. . . 12
ZZRW S0 (= () + 30 D0 |
i=3 j#i o i=3 j=1
+ (-1 HP. (4.8)
Assume
Ricl-;—i-Ricj; >2D, Vl<i<j<n.
Then
- Ric|j + Ricys D < Z3§j<k§n <Ricj]T + Rick,;) _ Z?=3 Rici;.
- 2 ’ - (n—2)(n-3) n—2
Hence for every 0 < ¢ < 1, by using (4.7), (4.8) and (2.4), we get
p< e RiaitRicy . Yizs Ric;
- 2 n—2
e n 1 — ¢ n n
Y R+ Ra) + S Y Ry = DIHE = LY 3 e
i=1 i=3 j=1 i=3 j=1
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ne —2 . . € (o0 12 o |2
+Z{ 3 Ha(h‘fﬁhgi)_gZ(h‘ff + |15 )}

£ = _ I —& oW -
=QZ(RuiiJrRzié?)+mZZRijz;+8Rlzii+(n—1—8)|H|2

i=3 i=3 j=1
n_2i=3j=1 Y
n—=2e—2 /o, 5 € (1og o P o |2
+Z[fH <h11+h22>_§ hl +2h11h22 hzi
o
n
e oq |2 oy 12
_§Z<h1? + |hy
i=3
£ — -6 &
R R — 2
2Z(R111;+R21§;)+n_ZZZlel]+£R1212+(n 1—8)|H|

i=3 j=1
.\ Z[ n— 2)8 e (’;?T +hg> B <e (nl_—;)z) (ﬁ“ +fz%>z}

n n
2
Z(RliT;+R2121 Z ljl_[+8R1212+8(8 n)|H|
1=

i=3 j=1

—¢€
=

N ™
%)
[\)

where in the second inequality, we have used

el (o)™ (i +i2;3)2'

P = ii n—2 o n—2
Therefore,
£ - _ l—& e
eRpiz=D—| 3] 3 (Ryii + Ry57) + — Z;Z;Rw L8 n HE|. @9
i= i=3 j=

‘We claim that

n n

n
_ _ 1— _ _
% 3" (Rysii + Rys) + ﬁ SN R <=1 =K. (4.10)

i=3 i=3 j=I
If this is true, then combined with (4.9), we have
eRpiz =2 D —(n—1 _g)kmax +8(5,n)|H|2- (4.11)
By the assumption of the theorem, we get
Ric(ey, 81) + Ric(e, &2)

Ric(er, e1) + u>Ric(er, e2)  Ric(es, e3) + A*Ric(es, es)

= +

1+ u? 1+ A2
_ (Ric(e1, e1) + Ric(es, e3)) + 22 (Ric(ey, e1) + Ric(es, e4))
(14 22) (1 + p2)
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N 12 (Ric(ez, e2) + Ric(es, e3)) + A2 % (Ric(ea, e2) + Ric(es, es))
(1+22) (1 + p2)
>2((n =1 =& Kpax + 8, n) |H?).

Therefore, by the arbitrariness of ey, ez, e3, e4, we can take
D=(n—1-¢&)Kna+8.n)|HP.
Combining the above inequality with (4.11), we have
eR(s1,62,81,8) = D — ((n — 1 — &) Kpax + 8(e, 1) |H|2) =0.

Therefore we have R,75 > 0, and strict inequality holds for all frame {e;} and all numbers
A, u € [0, 1] at some point.

What is left is to prove the inequality (4.10). Under the given basis of TCM, a direct
computation gives

R(e1, €2, %1, £2)
_ Ri313 + 12 Ro3os + A2 Ria1a + A2 11> Roaoa — 20 R1234

— 4.12
(422 (14 12) *12

n n — 2D D 2D
_ o _ o Riiti + u2Roini  Raiai + A2Ruiai
Z(R(Slasiyglygi)+R(8278i:82,8i)) :Z[ Lili T K724 n 3i3i 4141:|,

2 2
i=1 i=1 I+pu 1+4

n n n 2 — — 2 = n

- _ - _ W Ry + Roini A R3i3; + Rajai

;(R(%asivg&si)+R(8478i:8478i)):;§|: 2 T ie :
n n
> Reeiej.5.8) =Y Rijij. S<i=<n. (4.13)
Jj=1 Jj=1

Note that,

n n n
£ _ o _ o 1—¢ — -
3 23 (R(e1, €1, 81,8) + R(ez, €1, 82, &) + — 23 'EIR(Si»gj,Shej)

n
& — _ _ - - _ ~ - =
=3 E (R(e1, i, 81, 8) + R(e2, €, 82, 8)) — €R(e1, €2, 81, 82)
i=1

1_ n n _ _ _
+ P ZZR(SiaSpgi»gj)
i=3 j=1
e n
= 5 Z (R(S], &i, €1, &) + R(e, &, 52,5,')) —eR(eq, 2,81, €2)

i=1

1—¢ _
+ —— - —=2)n— D Kjax.
n—2
By using (4.12) and (4.13), we have

15 - . . .
5Z(R(el,ei,a,s,-)+R(ez,ei,82,£i))—R(81,82,81,82)

i=1

_ lz Riiti + i*Roizi | Raisi + A Raiai
X L4 p? 1422

i=l
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41 Z Riti + 12 Roini Raizi + 22 Rajai
1+ pu? 1+ A2

_ R1313 + 12 Ro303 + M Rig1a + A2 Roans — 200 R 1234
(1+22) (14 p2)

4 = _ _ _
1 3 Rijti + W Roini | Raisi + 3% Raiai
=32

1+ l"z 1+ 22 ] + (n — 4)Kiax

_ Ri313 + 112 Ra33 + A2 Riara + A2 1% Roaoa — 2A R 1234
(1+22) (14 p2)

l # (R +I§xx)
2 30100+ D) 1212 3434
24 pu? + 22 3+ _
3 3 3 55 ) Ri3i3
20+ 221+ 42 31+ +u?)

20+ 21+ 42 30+ 251+ u?)
L+2p2 + 222 3%+ au
(2(1 A+ 12 304221+ pu4?)
24?4222 3A2u% 4 A
(2(1 A +ud) 30+ A + 1)
n M (K(er +es,eates)+ K(eg —e3 e —es) + K(ex+ez, e —es) + K(ex —e3,e1 +es))
6(1+2A2)(1+ u?)

[(30 4550+ > —4a1) -2

Ra323

(1+2A2 +22u2 332 4+ ap )

) Rosoa + (n — HKypax

D
= 6(1 +22)(1 4 pu2)

+ (3(/\2 +u?) - 2w) 4 (3(1 + 222 — 2,\u)
+ (3(1 + 222 — 2,\u> <3(A2 +u?) - 2w> T mm} max & (1 — B Koax
= (n — 2)Kmax.

where in the last inequality, we have used the fact that all the coefficients are non-negative
for A, € [0, 1], thus we can replace R;j;; with K;,,. Therefore,

n
= (Reerei 1.5 + Rz, 1, 82,80) + - RINN
i=3 i=3 j=1
<e(@— 2)Kmax =+ 17 (n—2)(n— 1)Kmax
=m-1- S)Kmax.
We complete the proof. O

If we take ¢ = 1 in Theorem 4.5, we have Theorem 1.4. If we take ¢ = ﬁ in Theorem

4.5, we have Theorem 1.5.
2(n%—6n+10)

D2 —dn12) in Theorem 4.5 to make the coefficient § (e, n) to be

‘We also can take ¢ =
minimal when n > 6.

Corollary 4.6 Suppose M" (n > 6) is a closed simply connected submanifold of MV satisfying
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Ricl <n B 2(n* — 6n + 10) ) - (=2 = —dn> o

|H

’

1_(n—4)(n2—4n+2) (n2 —4n +2)?

with strict inequality at some point, then M is diffeomorphic to S".

Remark 4.2 1t is easy to check, for n > 6,

2(n% — 6n + 10) n=2)(n=3)Yn—Hn®>  nmn—23)

-1 < <
n—4(n?—4n+2) (n? —4n +2)2 n—2

Therefore, when n > 6, Corollary 4.6 implies Theorem 1.5.
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