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Abstract. We develop estimates for the solutions and derive existence and uniqueness results of
various local boundary value problems for Dirac equations that improve all relevant results known
in the literature. With these estimates at hand, we derive a general existence, uniqueness and reg-
ularity theorem for solutions of Dirac equations with such boundary conditions. We also apply
these estimates to a new nonlinear elliptic-parabolic problem, the Dirac-harmonic heat flow on Rie-
mannian spin manifolds. This problem is motivated by the supersymmetric nonlinear σ -model and
combines a harmonic heat flow type equation with a Dirac equation that depends nonlinearly on the
flow.

Keywords. Dirac equation, existence, uniqueness, chiral boundary condition, Dirac-harmonic map
flow

1. Introduction

The Dirac equation is one of the mathematically most important and fruitful structures
from physics. As the name indicates, it was first introduced by Dirac [26]. Dirac’s orig-
inal equation is hyperbolic, but the elliptic version, which this paper is concerned with,
appears naturally in geometry. Both solutions on closed manifolds and on manifolds with
boundary have found important applications. In this paper, we shall systematically inves-
tigate boundary value problems and derive results that are sharper and stronger than all
relevant results known prior to our work. We shall then provide a new application which
depends on our regularity, existence and uniqueness results and which could not have
been derived with the results known in the literature.

The mathematical history of boundary value problems for Dirac equations started with
the work of Atiyah, Patodi and Singer. In their seminal papers [4–6], they introduced a
nonlocal boundary condition for first order elliptic differential operators and established
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an index theorem on compact manifolds with boundary. This constitutes a cornerstone of
the theory of first order elliptic boundary value problems.

In recent years, important progress has been achieved on various extensions, gen-
eralizations and simplifications of the Atiyah–Patodi–Singer theory and their applica-
tions. In particular, in the works of Bismut and Cheeger [12], Booß-Bavnbek and Woj-
ciechowski [14], Brüning and Lesch [16, 17], Bartnik and Chruściel [10], Ballmann,
Brüning and Carron [7], Bär and Ballmann [9], etc., regularity theorems, index theorems
and Fredholm theorems for such kind of elliptic boundary value problems have been es-
tablished.

Although the index theorems and Fredholm theorems give us information or criteria
for the existence of solutions, in many cases (for instance the proof of the positive energy
theorem [28, 31, 44, 52] and Dirac-harmonic maps, see below), for an elliptic boundary
problem and given boundary data, one needs more precise results about the existence and
uniqueness of solutions, and usually this is based on appropriate global elliptic estimates
for the solutions. This is our motivation for studying boundary value problems for Dirac
equations.

In this paper, we first consider the existence and uniqueness for Dirac equations under
a class of local elliptic boundary value conditions B (including chiral boundary condi-
tions, MIT bag boundary conditions and J-boundary conditions, see the definitions in
Section 2, cf. [9, 32]). A Dirac bundle E over a Riemannian manifold Mm (m ≥ 2) is a
Hermitian metric vector bundle of left Clifford modules over the Clifford bundle Cl(M),
such that multiplication by unit vectors in TM is orthogonal and the covariant derivative
is a module derivation. Let ∇0 be a smooth Dirac connection on E and consider another
Dirac connection of the form ∇ = ∇0 + 0, that is, 0 ∈ �1(Ad(E)) commutes with Clif-
ford multiplication. We shall work with the Dirac connection spaces Dp(E) defined by
the norm

‖0‖p := ‖0‖L2p(M) + ‖d0‖Lp(M).

In particular, 0 need not be smooth.
The Dirac operator associated with the Dirac connection ∇ is defined by

/D := ei · ∇ei ,

where ei · denotes Clifford multiplication, and {ei} is a local orthonormal frame on M .
Here and below, we use the usual summation convention. We will establish the existence
and uniqueness of solutions of the following Dirac equations:{

/Dψ = ϕ in M,
Bψ = Bψ0 on ∂M,

(1.1)

where ϕ ∈ Lp(E) and Bψ0 ∈ W
1−1/p,p(E|∂M). Here and below, all of the Sobolev

spaces of sections of E are associated with the fixed smooth Dirac connection ∇0. As-
suming

p∗ > 1 if m = 2, p∗ ≥ (3m− 2)/4 if m > 2,

we have the following
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Theorem 1.1. Let E be a Dirac bundle over a compactm-dimensional (m ≥ 2) Rieman-
nian manifold Mm with boundary. Suppose that 0 ∈ Dp∗(E), then for any 1 < p < p∗,
(1.1) admits a unique solution ψ ∈ W 1,p(E). Moreover, ψ satisfies the estimate

‖ψ‖W 1,p(E) ≤ c(‖ϕ‖Lp(E) + ‖Bψ0‖W 1−1/p,p(E|∂M )
), (1.2)

where c = c(p, ‖0‖p∗) > 0.

This estimate is optimal in dimension 2 in the sense that the exponents cannot be im-
proved. It also improves the known estimates in higher dimensions. (The condition
p∗ ≥ (3m − 2)/4 for m > 2 arises from the unique continuation result of Jerison [35]
that we shall need in the proof.) For instance, in the fundamental work of Bartnik and
Chruściel [10], only L2-estimates were developed. While that was sufficient for their
Fredholm theory of the Dirac operator, for the nonlinear setting that we shall treat later in
this paper, the finer Lp-estimates that we obtain here are necessary. In [10], when apply-
ing the Fredholm criteria to get the existence of solutions, one needs additional conditions
(the mean curvature) on the boundary. Essentially, these conditions imply the triviality of
the kernel of the elliptic operators. In our case, this extra condition is unnecessary.

One key observation in our proof of the above theorem is that for a harmonic spinor
ψ ∈ W 1,p(E), the homogeneous boundary condition Bψ |∂M = 0 is equivalent to the
zero Dirichlet condition ψ |∂M = 0 (see Proposition 3.1 and Remark 3.4), which is not
the case for general spinors. Thus, the uniqueness problem for (1.1) can be reduced to
the triviality of a harmonic spinor with zero Dirichlet boundary value for Dirac operators
with a nonsmooth connection ∇0 + 0, 0 ∈ Dp∗ . To derive this uniqueness, in dimension
m = 2, inspired by the approach of Hörmander [34], we establish an L2-estimate with
some suitable weight for our Dirac operators (see Theorem 3.6); in dimension m > 2, we
apply the weak unique continuation property (WUCP) of Dirac type operators D + V ,
where D is a Dirac operator with a smooth connection and V is a potential (see [18]
for V continuous, [13] for V bounded, and [35] for V ∈ L(3m−2)/2) and use an extension
argument for Dirac operators on manifolds with boundary as in [14]. For the case of a
smooth connection, see [33, 45]. Finally, by using the uniqueness result for our boundary
value problem ( /D,B), we can improve the standard elliptic boundary estimate for Dirac
operators to our main Lp-estimate (1.2) (see Theorem 3.11 and Remark 3.7), which is
uniform in the sense that the constant c = c(p, ‖0‖p∗) > 0 depends on the ‖·‖p∗ norm
of 0 but not on 0 itself, a property playing an important role in our later application to
some elliptic-parabolic problem.

We can also apply the above result to derive the existence and uniqueness for boundary
value problems for Dirac operators along a map. This will also be needed for the Dirac-
harmonic map heat flow introduced below. LetM be a compact Riemannian spin manifold
with boundary ∂M , N be a compact Riemannian manifold and 8 a smooth map from M

to N . Given a fixed spin structure on M , let 6M be the spin bundle of M . On the twisted
bundle 6M ⊗8−1TN , one can define the Dirac operator /D along the map 8 [22], i.e.,

/D9 := /∂ψα ⊗ θα + ei · ψ
α
⊗∇

TN
8∗(ei )

θα.
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Here 9 = ψα ⊗ θα , {θα} are local cross-sections of 8−1TN , {ei} is a local orthonormal
frame of TM , /∂ = ei · ∇ei is the usual Dirac operator on the spin bundle over M and
X· stands for Clifford multiplication by the vector field X on M . We say that 9 is a
harmonic spinor along the map 8 if /D9 = 0. The chiral boundary value problem for
Dirac operators along a map was first considered in [24], extending the classical chiral
boundary value problem for usual Dirac operators introduced in [28].

Theorem 1.2. Let Mm (m ≥ 2) be a compact Riemannian spin manifold with boundary
∂M , and N be a compact Riemannian manifold. Let 8 ∈ W 1,2p∗(M;N). Then for every
1 < p < p∗, η ∈ Lp(M;6M ⊗8−1TN) and Bψ ∈ W 1−1/p,p(∂M;6M ⊗8−1TN),
the boundary value problem for the Dirac equation{

/D9 = η in M,
B9 = Bψ on ∂M,

admits a unique solution 9 ∈ W 1,p(M;6M ⊗8−1TN), where /D is the Dirac operator
along the map 8. Moreover, there exists a constant c = c(p, ‖8‖W 1,2p∗ (M)) > 0 such
that

‖9‖W 1,p(M) ≤ c(‖η‖Lp(M) + ‖Bψ‖W 1−1/p,p(∂M)).

We shall then apply these estimates and existence results to a new elliptic-parabolic prob-
lem in geometry that involves Dirac equations. The novelty of this problem consists in
the combination of a second order semilinear parabolic equation with a first order elliptic
side condition of Dirac type. We see this as a model problem for a heat flow approach to
various other first order elliptic problems in geometric analysis. In any case, this is a non-
linear system coupling a Dirac equation with another prototype of a geometric variational
problem, that of harmonic maps. The problem is also motivated by the supersymmetric
nonlinear σ -model of QFT; see e.g. [25, 36] where the fermionic part is a Dirac spinor.
In fact, this is one of the most prominent roles that Dirac equations play in contemporary
theoretical physics, as this leads to the action functional of superstring theory.

In order to set up that problem, we first have to recall the notion of Dirac-harmonic
maps. Consider the functional

L(8,9) =
1
2

∫
M

(‖d8‖2 + (9, /D9)),

where ( , ) = Re 〈 , 〉 is the real part of the induced Hermitian inner product 〈 , 〉 on
6M ⊗8−1TN .

A Dirac-harmonic map (see [21, 22]) is then defined to be a critical point (8,9)
of L. The Euler–Lagrange equations are

τ(8) = 1
2 (ψ

α, ei · ψ
β)RN (θα, θβ)8∗(ei) =: R(8,9), (1.3)

/D9 = 0, (1.4)

where RN (X, Y ) := [∇NX ,∇
N
Y ] − ∇

N
[X,Y ] for X, Y ∈ 0(TN) stands for the curvature

operator of N and τ(8) := (∇eid8)(ei) is the tension field of 8.
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The general regularity and existence problems for Dirac-harmonic maps have been
considered in [21–24, 47, 51, 54]. The existence of uncoupled Dirac-harmonic maps (in
the sense that the map part is harmonic) via the index theory method was obtained in [3].
For the construction of examples of coupled Dirac-harmonic maps (in the sense that the
map part is not harmonic), we refer to [2, 39].

Here, we propose and develop an alternative approach to the existence of Dirac-
harmonic maps. This will be the parabolic or heat flow approach. (1.3) is a second order
elliptic system, and so we can turn it into a parabolic one by letting the solution depend
on time t and putting a time derivative on the left hand side. In contrast, (1.4) is first
order, and so we cannot convert it into a parabolic equation, but need to carry it as a con-
straint along the flow. Thus, we introduce the following flow for Dirac-harmonic maps:
for 8 ∈ C2,1,α(M × (0, T ];N) and 9 ∈ C1,0,α(M × [0, T ];6M ⊗8−1TN),{

∂t8 = τ(8)−R(8,9) in M × (0, T ],
/D9 = 0 in M × [0, T ],

(1.5)

with the boundary-initial data{
8 = φ in M × {0} ∪ ∂M × [0, T ],
B9 = Bψ on ∂M × [0, T ],

(1.6)

where φ∈C2,1,α(M×{0}∪∂M×[0, T ];N) andψ ∈C1,0,α(∂M×[0, T ];6M×φ−1TN),
and f ∈ Ck,l,α means that f (x, ·) ∈ Cl+α/2 and f (·, t) ∈ Ck+α . We call this system (1.5)
the heat flow for Dirac-harmonic maps.

We consider this problem as a model for a parabolic approach to other problems in
geometric analysis that involve first order side conditions. Also, we shall use this problem
to demonstrate the power of our estimates for Dirac equations.

We shall apply our elliptic estimates for Dirac equations with boundary conditions to
obtain the local existence and uniqueness of the heat flow for Dirac-harmonic maps. The
long time existence will be considered elsewhere, as it involves problems of a different
nature. For the classical theory of harmonic map heat flow, we refer to e.g. [19, 27, 30,
42, 43, 49, 50].

Theorem 1.3. Let Mm (m ≥ 2) be a compact Riemannian spin manifold with boundary
∂M , and N be a compact Riemannian manifold. Suppose that

φ ∈
⋂
T>0

C2,1,α(M̄ × [0, T ];N),

and

Bψ ∈
⋂
T>0

C1,0,α(∂M × [0, T ];6M ⊗ φ−1TN)

for some 0 < α < 1. Then the problem (1.5), (1.6) admits a unique solution

8 ∈
⋂

0<t<τ<T1

C2,1,α(M̄ × [t, τ ]) ∩ C0(M̄ × [0, T1];N),
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and

9 ∈
⋂

0<t<τ<T1

C1,0,α(M̄ × [t, τ ]) ∩ C2,0,α(M × (0, T1))

∩ C1,0,0(M̄ × [0, T1];6M ⊗8
−1TN)

for some time T1 > 0. The maximum time T1 is characterized by the condition

lim sup
t<T1, t→T1

‖d8(·, t)‖C0(M̄) = ∞.

Remark 1.1. All our results (Theorems 1.1–1.3) hold for the chiral boundary operators
B± := 1

2 (Id± n ·G), the MIT bag boundary operators B±MIT :=
1
2 (1±

√
−1 n), and the

J -boundary operators B±J :=
1
2 (Id ± n · J ). We will only give the proofs for the case of

the chiral boundary conditions. The proofs for the other cases are similar and hence we
will omit them.

We would like to mention that Branding [15] considered regularized Dirac-harmonic
maps from closed Riemannian surfaces and studied the corresponding evolution prob-
lem.

The paper is organized as follows. In Section 2, we provide the definitions of Dirac
bundle etc. and Dirac-harmonic maps. We also derive the Euler–Lagrange equation for
Dirac-harmonic maps. In Section 3, we derive some elliptic estimates and the existence
and uniqueness of solutions of Dirac equations with chiral boundary value conditions.
In Section 4, we will prove Theorem 1.2. In Section 5 we give a proof of the short time
existence for the flow of Dirac-harmonic maps, Theorem 1.3. Finally, in Section 6 we
discuss a special case of the Dirac equation along a map between Riemannian disks. In
this special case, the solution can be given through Cauchy integrals.

Notations. The lower case letter c will designate a generic constant possibly depending
onM,N and other parameters, but independent of a particular solution of (5.1) and (5.2),
while the capital letter C will designate a constant possibly depending on the solutions.

We list some notations:

• 6M the spin bundle on M .
• Ck(M;N) the space of all Ck-maps from M to N .
• Ck(E) = Ck(M;E) the space of all Ck-sections of E where E is a vector bundle

on M .
• Ck(∂M;E) the space of all Ck-sections of E restricted to the boundary ∂M .
• Ck,l,α(M × I ;E) the space of all sections ψ(·, t) of E such that ψ ∈ Ck,l,α(M × I ).
• W s,p(E) = W s,p(M;E).
• End(E) the endomorphism bundle of E.
• �p(E) = 0(3pT ∗M ⊗ E) the space of all E-valued p-forms on M .
• �p(son) = �

p(M)⊗ son.
• Ad(E) a subbundle of End(E) such that A = −A∗ for all A ∈ Ad(E).
• A(D) the space of all holomorphic functions on D.
• ‖·‖ the inner norm, i.e., ‖ψ‖2 = 〈ψ,ψ〉. We also use the same notation for some

special norms, specified in appropriate places.
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2. Preliminaries

2.1. Dirac bundles

Definition 2.1 ([40]). Let E be a Hermitian bundle of left Clifford modules over the
Clifford bundle Cl(M) on a Riemannian manifold Mm. Denote Clifford multiplication,
the metric and the connection by ·, 〈 , 〉,∇ respectively. We say that E is a Dirac bundle
if the following properties hold:

D1. Clifford multiplication is parallel, i.e., the covariant derivative on E is a module
derivation, i.e.,

∇X(Y · ψ) = ∇XY · ψ + Y · ∇Xψ, ∀X, Y ∈ 0(TM), ψ ∈ 0(E).

D2. Clifford multiplication by unit vectors in TM is orthogonal, i.e.,

〈X · ψ, ϕ〉 = −〈ψ,X · ϕ〉, ∀X ∈ TM, ψ, ϕ ∈ E.

D3. The connection is a metric connection, i.e.,

X〈ψ, ϕ〉 = 〈∇Xψ, ϕ〉 + 〈ψ,∇Xϕ〉, ∀X ∈ TM,ψ, ϕ ∈ 0(E).

We call such a connection a Dirac connection.

Then one can define the Dirac operator associated to the Dirac bundle by

/D := γE ◦ ∇,

where γE stands for Clifford multiplication on E. In local coordinates, /D is given by

/D = γE(ei)∇ei = e
i
· ∇ei

where {ei} is a local orthogonal frame of TM . One can check that /D is in general not
self-adjoint: we have the Green formula∫

M

〈 /Dψ, ϕ〉 =

∫
M

〈ψ, /Dϕ〉 +

∫
∂M

〈n · ψ, ϕ〉, ∀ψ, ϕ ∈ 0(E).

Suppose E is a Dirac bundle on M and F = E|∂M is the restriction of E to the
boundary ∂M . Then F is a Dirac bundle in a natural way:

F1. The metric on F is just the restriction of E on ∂M .
F2. Clifford multiplication of F , denoted by γ , is defined as

γ (X)ψ := n ·X · ψ, ∀X ∈ T ∂M, ψ ∈ F.

F3. The connection ∇̄ of F is defined as

∇̄Xψ := ∇Xψ +
1
2γ (A(X))ψ, ∀X ∈ 0(T ∂M), ψ ∈ 0(F),

where A is the shape operator of ∂M with respect to the unit outward normal field n
along ∂M .
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Lemma 2.1. This construction gives a Dirac bundle F on ∂M .

Proof. (1) It is obvious that γ ◦ A ∈ �1(Ad(F )). As a consequence, ∇̄ is a metric
connection on F . Moreover, γ (X) ∈ 0(Ad(F )).

(2) Let B be the second fundamental form of ∂M in M . For every X, Y ∈ 0(T ∂M)
with ∇̄XY = 0 at the point under consideration,

∇̄X(γ (Y )ψ) = ∇X(n · Y · ψ)+ 1
2A(X) · Y · ψ

= −A(X) · Y · ψ + n · B(X, Y ) · ψ + n · Y · ∇Xψ + 1
2A(X) · Y · ψ

= −A(X) · Y · ψ − 〈A(X), Y 〉ψ + n · Y · ∇Xψ + 1
2A(X) · Y · ψ

= −A(X) · Y · ψ + 1
2A(X) · Y · ψ +

1
2Y · A(X) · ψ + n · Y · ∇Xψ

+
1
2A(X) · Y · ψ

= n · Y · ∇Xψ + 1
2Y · A(X) · ψ = γ (Y )∇̄Xψ.

This identity means that γ is parallel. Therefore, F is a Dirac bundle on ∂M . ut

The Dirac operator /̄D of F , defined by

/̄D := γ (ei)∇̄ei ,

where {ei} is a local orthogonal frame of T ∂M , according to the definition, satisfies the
relation

/̄D = n · /D +∇n −
m− 1

2
h

where h is the mean curvature of ∂M with respect to n. If M is a surface, −h is just the
geodesic curvature of ∂M (as a curve) in M .

2.2. Chiral and MIT bag boundary value conditions

In this subsection, we introduce the chiral and MIT bag boundary conditions (cf. [9, 32]).
We say that G is a chiral operator if G ∈ 0(End(E)) satisfies

G2
= Id, G∗ = G, ∇G = 0, GX · = −X ·G

for every X ∈ TM . It is easy to check that

γ (X)G = Gγ (X), ∇̄G = 0, /̄DG = G /̄D, /̄Dn · = −n · /̄D

on the boundary ∂M for all X ∈ T ∂M . The chiral boundary operator B± is defined by

B± := 1
2 (Id± n ·G).

It is obvious that (B±)∗ = B∓ and /̄DB± = B∓ /̄D. The chiral boundary operator is
elliptic [9] since

n ·X · B± = B∓ · n ·X, ∀X ∈ T ∂M.
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The MIT bag boundary operator is defined by

B±MIT :=
1
2 (Id±

√
−1 n).

More generally, when J ∈ 0(End(E)) satisfies

J 2
= − Id, J ∗ = −J, ∇J = 0, JX · = X · J

for every X ∈ TM , we can define a boundary operator, called the J -boundary operator,
by

B±J :=
1
2 (Id± n · J ).

If J =
√
−1, then it is easy to see that the MIT bag boundary operator is just the

√
−1-boundary operator. Another example is J =

√
−1G1G2 where [G1,G2] = 0

with G1,G2 being chiral operators. In fact, in our setting, the J -operator is just the com-
position of the chiral operator G with e1 · e2 · and vice versa. One can check that B±J is
elliptic since

B±J · n ·X = n ·X · B∓J , ∀X ∈ T ∂M.

For simplicity, we shall denote by B one of B±, B±MIT and B±J . For convenience, we will
mainly consider the case of chiral boundary conditions and omit the detailed discussions
of other boundary conditions.

The following theorem is well known [9, 23, 46, 47].

Theorem 2.2 (see [46, p. 55, Theorem 1.6.2]). The operator

( /D,B) : W s,p(E)→ W s−1,p(E)×W s−1/p,p(E|∂M)

is Fredholm for all s ≥ 1 and 1 < p < ∞. Moreover its kernel and cokernel are
independent of the choice of s and p. Therefore, we have the following elliptic a priori
estimate:

‖ψ‖W s,p(E) ≤ c(‖ /Dψ‖W s−1,p(E) + ‖Bψ‖W s−1/p,p(E|∂M )
+ ‖ψ‖Lp(E)),

where c = c(p, s,M, ∂M, /D,B) > 0.

Proof. This is a consequence of the fact that ( /D,B) is an elliptic operator for s ≥ 1 and
1 < p <∞. ut

2.3. Dirac connection spaces

LetE be a Dirac bundle. We consider the affine space of those connections∇ for whichE
is again a Dirac bundle. Choose a connection ∇0; then for any other connection ∇ on E,

∇ = ∇0 + 0,

where 0 ∈ �1(End(E)).
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Lemma 2.3. Suppose ∇0 is a Dirac connection. Then ∇ := ∇0+0 is a Dirac connection
if and only if

0 ∈ �1(Ad(E)), [0, γE] = 0,

where γE denotes Clifford multiplication of E.

Proof. We only need to check that γE is parallel. For every X, Y ∈ 0(TM) with
∇XY = 0 at the point under consideration, we have

∇X(γ
E(Y )ψ) = ∇0X(γ

E(Y )ψ)+ 0(X)γE(Y )ψ = γE(Y )∇0Xψ + γ
E(Y )0(X)ψ

= γE(Y )∇Xψ. ut

Introduce /0 := γE ◦ 0 = γE(ei)0(ei). Then

/D = /D0 + /0,

where /D, /D0 are the Dirac operators associated to the connections ∇,∇0 respectively.
From now on, we will consider the modified nonsmooth connection ∇0 + 0, denoted
by ∇. All of the Sobolev spaces are associated with some fixed smooth connection ∇0. It
is well known that this definition of Sobolev spaces is independent of the choice of ∇0 if
M is compact. However, the connection ∇ need not be smooth—we only assume that 0
belongs to some special function space. For example,

d0 ∈ Lp
∗

(M), 0 ∈ L2p∗(M),

where
p∗ > 1 if m = 2, p∗ ≥ (3m− 2)/4 if m > 2.

Definition 2.2. For p ≥ 1, define Dp(E) to be the completion of the subspace of
�1(Ad(E)) defined by

D(E) = {0 ∈ �1(Ad(E)) : [0, γE] = 0}

with respect to the norm

‖0‖p := ‖0‖L2p(M) + ‖d0‖Lp(M).

We call these spaces the Dirac connection spaces.

2.4. Dirac-harmonic maps

Let (Mm, g) be a compact Riemannian spin manifold with (possibly empty) boundary
∂M , and (Nn, h) be a compact Riemannian manifold. Concerning the definition and
properties of Riemannian spin manifolds, we refer the reader to [40] for more back-
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ground material. For any (8,9) ∈ C1(M,N) × 0(6M ⊗ 8−1TN), we consider the
functional [21]

L(8,9) =
1
2

∫
M

(‖d8‖2 + (9, /D9)),

where ( , ) = Re 〈 , 〉 is the real part of the Hermitian inner product 〈 , 〉.
A Dirac-harmonic map (see [21, 22]) is then defined to be a critical point (8,9)

of L. The Euler–Lagrange equations are{
τ(8) = 1

2 (ψ
α, ei · ψ

β)RN (θα, θβ)8∗(ei) =: R(8,9),
/D9 = 0,

where RN (X, Y ) := [∇NX , ∇NY ] − ∇
N
[X,Y ] for X, Y ∈ 0(TN) stands for the curvature

operator of N and τ(8) := (∇eid8)(ei) is the tension field of 8.
EmbedN into Rq isometrically for some integer q. We may assume there is a bounded

tubular neighborhood Ñ of N in Rq . Let π : Ñ → N be the nearest point projection. We
may assume π can be extended smoothly to the whole Rq with compact support. Now we
can derive the Euler–Lagrange equation for L. Let 8 : M → N with 8 = (8A), and a
spinor9 = 9A⊗∂A◦8 along the map8with9 = (9A)where9A are spinors overM ,
and ∂A = ∂/∂zA. Notice that dπ |N is an orthogonal projection and dπ(T ⊥N) = 0. In
fact,

dπ(X) = X, ∀X ∈ TN,

and

dπ(ξ) = 0, ∀ξ ∈ T ⊥N,

where T ⊥N is the normal bundle of N in Rq . Hence, after restriction to N , we have

πAB π
B
C = π

A
C , πAB = π

B
A .

It is easy to check that

νAB (8)∇8
B
= 0, νAB (8)9

B
= 0,

where νAB := δ
A
B − π

A
B .

For any smooth map η ∈ C∞0 (M,R
q) and any smooth spinor field ξ ∈C∞0 (6M⊗R

q),
we consider the variation

8t = π(8+ tη), 9At = π
A
B (8t )(9

B
+ tξB).

It is easy to check that

80 = 8, 90 = 9
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and

∂8At

∂t

∣∣∣∣
t=0
= πAB (8)η

B ,
∂9At

∂t

∣∣∣∣
t=0
= πAB (8)ξ

B
+ πABC(8)π

C
D (8)9

BηD,

where

πAB =
∂πA

∂zB
, πABC =

∂2πA

∂zB∂zC
, . . . .

Moreover,
πABC(8)π

C
D (8) = π

B
AC(8)π

C
D (8), πABC = π

A
CB . (2.1)

Then we have

Proposition 2.4. The Euler–Lagrange equations for L are

18A = πABC(8)〈∇8
B ,∇8C〉 + πAB (8)π

C
BD(8)π

C
EF (8)(9

D,∇8E ·9F )

and

/∂9A = πABC(8)∇8
B
·9C .

Remark 2.1. Denote

�AB := ν
A
C (8)dν

C
B (8)− dνAC (8)ν

C
B (8) = [ν(8), dν(8)]AB ,

RAGDF := π
A
B π

C
BDπ

G
E π

C
EF − π

G
B π

C
BDπ

A
Eπ

C
EF ,

�̃AG :=
1
2R

A
GDF (8)(9

D, ei ·9
F )ηi .

Then �AB = −�
B
A, �̃AB = −�̃

B
A and the Euler–Lagrange equations for L can be rewritten

as follows [24]: {
18A = −〈�AB , d8B〉 + 〈�̃AB , d8B〉,
/∂9A = −�AB ·9

B .

Using Clifford multiplication · for the Dirac bundle �∗(M), we can also write the above
system as follows: {

18A = �AB · d8
B
+ 〈�̃AB , d8B〉,

/∂9A = −�AB ·9
B .

Proof of Remark 2.1. The proof is similar to one in [24]. However, we present it using
our notations. Introduce

SACD := πAB π
C
BD.

Then
RAGDF = S

AC
D SGCF − SGCD SACF

satisfies
RAGDF = −R

G
ADF = −R

A
GFD.
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Moreover,

〈�̃AB , d8B〉 = 1
2R

A
GDF (8)(9

D,∇8G ·9F ) = SACD SGCF (9D,∇8E ·9F )

= πAB π
C
BDπ

C
EF (9

D,∇8E ·9F ).

Now we only need to check that �AB ∧ d8B = 0. Using νABd8B = 0, we have

�AB ∧ d8B = νACdνCB ∧ d8B = 0. ut

Proof of Proposition 2.4. Note that both η and ξ have compact support in M̊ . Since

L(8,9) =
1
2

∫
M

(‖∇8A‖2 + (9A, /∂9A)),

by using (2.1) we have

dL(8t , 9t )
dt

∣∣∣∣
t=0
=

∫
M

〈∇8A,∇(πAB η
B)〉 +

1
2

∫
M

(πAB ξ
B
+ πABCπ

C
D9

BηD, /∂9A)

+
1
2

∫
M

(
9A, /∂(πAB ξ

B
+ πABCπ

C
D9

BηD)
)

=

∫
M

〈∇8A, πAB∇η
B
+ πABC∇8

CηB〉 +

∫
M

(πAB ξ
B
+ πABCπ

C
D9

BηD, /∂9A)

+
1
2

∫
∂M

(
9A,n · (πAB ξ

B
+ πABCπ

C
D9

BηD)
)

= −

∫
M

(
18A − πABC〈∇8

B ,∇8C〉 − πAB π
C
BDπ

C
EF (9

D,∇8E ·9F )
)
ηA

+

∫
M

πAB π
C
BD(9

D, /∂9C − πCEF∇8
E
·9F )ηA +

∫
M

(/∂9A − πABC∇8
B
·9C, ξA)

+

∫
∂M

∇n8
AηA + 1

2 (9
A,n · ξA)

= −

∫
M

(
18A − πABC〈∇8

B ,∇8C〉 − πAB π
C
BDπ

C
EF (9

D,∇8E ·9F )
)
ηA

+

∫
M

πAB π
C
BD(9

D, /∂9C − πCEF∇8
E
·9F )ηA +

∫
M

(/∂9A − πABC∇8
B
·9C, ξA),

where n is the unit outward normal vector field along ∂M . ut

3. Existence and uniqueness of solutions of Dirac equations with chiral boundary
conditions

In this section, we suppose that Mm (m ≥ 2) is a compact Riemannian spin manifold
with boundary ∂M and E is a Dirac bundle on M . We want to derive an existence and
uniqueness result for solutions of Dirac equations with chiral boundary conditions. The
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key observation is that for harmonic spinors, the homogeneous chiral condition is equiv-
alent to the zero Dirichlet boundary condition. With this observation, we can derive a
useful L2-estimate for solutions of Dirac equations with chiral boundary conditions. The
assumption that the boundary is nonempty is essential here. Another application of this
observation is that one can derive Schauder boundary estimates.

3.1. A property of chiral boundary conditions

Importantly, the chiral boundary condition is conformally invariant. Moreover, it satisfies

Proposition 3.1. Suppose ∇ is a smooth Dirac connection. Then for every ψ ∈ H 1(E),
we have ∣∣∣∣∫

∂M

(‖ψ‖2 − 2‖Bψ‖2)
∣∣∣∣ ≤ 2‖ψ‖L2(E)‖

/Dψ‖L2(E).

Proof. First, we assume that ψ is smooth. Introduce a vector field

X := 1
2 (ψ, ei ·Gψ)ei .

Then

〈X,n〉 = 1
2 〈ψ,n ·Gψ〉, ‖B±ψ‖2 = 1

2‖ψ‖
2
± 〈X,n〉, divX = −( /Dψ,Gψ).

Using these facts and integrating by parts, we get∣∣∣∣∫
∂M

(‖ψ‖2 − 2‖Bψ‖2)
∣∣∣∣ = 2

∣∣∣∣∫
M

( /Dψ,Gψ)

∣∣∣∣ ≤ 2‖ /Dψ‖L2(E)‖ψ‖L2(E).

The general case follows since 0(E) is dense in H 1(E). ut

Remark 3.1. This proposition says that the two systems{
/Dψ = 0 in M,
Bψ = 0 on ∂M,

{
/Dψ = 0 in M,
ψ = 0 on ∂M,

are equivalent. This fact is important for our whole theory of Dirac equations. With this
observation, we can then solve Dirac equations with chiral boundary value conditions.

Remark 3.2. Proposition 3.1 also holds for J -boundary operators. The proof is similar to
Proposition 3.1 and we omit it here. Moreover, all the results associated to chiral boundary
values are also valid for J -boundary values. Again, we omit the proof.
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3.2. Regularity of weak solutions and elliptic estimates

Definition 3.1. Suppose that /0 ∈ Lp
′

loc(M). Let ψ, ϕ ∈ Lploc(E) where 1/p + 1/p′ = 1
with p ≥ 1. We call ϕ a weak solution of the Dirac equation /Dψ = ϕ if∫

M

〈ϕ, η〉 =

∫
M

〈ψ, /Dη〉

for all smooth spinors η ∈ 00(E) of E with compact support in the interior of M .

Assume

m̂ > 2 for m = 2, m̂ = m for m > 2.

First, we have the following regularity results.

Theorem 3.2 (Regularity of weak solutions [9, 10]). Let M,E be as in Theorem 1.1.
Suppose that /0 ∈ W k,m̂

loc (M). Let ψ ∈ L2
loc(E) be a weak solution of /Dψ = ϕ with

ϕ ∈ H k
loc(E). Then ψ ∈ H k+1

loc (E).

Theorem 3.3 (Lp-estimate). Let M,E be as in Theorem 1.1. Suppose that p ∈ (1,∞)
and /0 ∈ Lµ(M) where µ = m if p < m and µ > p if p ≥ m. Let ψ ∈ W 1,p(E) be a
solution of /Dψ = ϕ with ϕ ∈ Lp(E). Then there exists a constant c = c(p, /0) > 0 with

‖ψ‖W 1,p(E) ≤ c(‖ϕ‖Lp(E) + ‖Bψ‖W 1−1/p,p(E|∂M )
+ ‖ψ‖Lp(E)).

Proof. For every ε > 0, decompose /0 = /0ε + /0∞ with

‖/0ε‖Lµ(E) ≤ ε, ‖/0∞‖L∞(E) ≤ c(ε).

Noticing that

/D0ψ = ϕ − /0ψ = ϕ − /0εψ − /0∞ψ,

we have

‖ /D0ψ‖Lp(E) ≤ ‖ϕ‖Lp(E) + ‖/0εψ‖Lp(E) + ‖/0∞ψ‖Lp(E)

≤ ‖ϕ‖Lp(E) + ‖/0ε‖Lµ(E)‖ψ‖Lpµ/(µ−p)(E) + ‖/0∞‖L∞(E)‖ψ‖Lp(E)

≤ ‖ϕ‖Lp(E) + ε‖ψ‖W 1,p(E) + c(ε)‖ψ‖Lp(E)

since 1/p−1/µ = 1/p−1/m for p < m, and 1/p−1/µ > 1/p−1/m for µ > p ≥ m.
Hence, by Theorem 2.2, for suitable ε > 0, we get

‖ψ‖W 1,p(E) ≤ c(‖ϕ‖Lp(E) + ‖Bψ‖W 1−1/p,p(E|∂M )
+ ‖ψ‖Lp(E)). ut

Remark 3.3. If µ > m, we can choose c = c(p, ‖/0‖Lµ(M)) > 0.
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Proof. We only need to check the case of a smooth spinor, i.e., ψ ∈ 0(E). If not, suppose
that there exist sequences ψn ∈ 0(E) and /0n ∈ Lµ(M) such that

1 = ‖ψn‖W 1,p(E) ≥ n(‖ /Dnψn‖Lp(E) + ‖Bψn‖W 1−1/p,p(E|∂M )
+ ‖ψn‖Lp(E)),

and

‖/0n‖Lµ(M) ≤ C,

where /Dn = /D0 + /0n. Then for max{p,m} < p′ < µ, /0n is a bounded subset in
Lp
′

(E) and hence there exists a subsequence, also denoted by /0n, that converges weakly
to /0 ∈ Lp

′

(M) in the reflexive space Lp
′

(E). We may assume that

ψn ⇀ ψ in W 1,p(E), ψn→ ψ in Lp̃(E)

according to the Sobolev–Kondrashov embedding theorem where 1/p̃ = 1/p − 1/p′ >
1/p − 1/m. Hence ψ = 0 by the choice of ψn. Moreover, if we denote /D = /D0 + /0,
then

‖ /Dψn‖Lp(E) ≤ ‖ /Dnψn‖Lp(E) + ‖(/0 − /0n)ψn‖Lp(E)

≤ ‖ /Dnψn‖Lp(E) + ‖/0 − /0n‖Lp′ (M)‖ψn‖Lp̃(E).

In particular, /Dψn converges strongly to 0 in Lp(E) and so does /0nψn. But we already
know that

Bψn→ 0 in W 1−1/p,p(E|∂M), ψn→ 0 in Lp(E).

The Lp-estimate Theorem 3.3 implies that

1 = ‖ψn‖W 1,p(E) ≤ c(p, /0)(‖ /Dψn‖Lp(E) + ‖Bψn‖W 1−1/p,p(E|∂M )
+ ‖ψn‖Lp(E))→ 0.

Remark 3.4. By a similar computation, Proposition 3.1 holds for the case of a non-
smooth connection ∇ = ∇0 + 0 with 0 ∈ Lm̂(M).

3.3. L2-estimate

In this subsection, we want to prove that the solution of the Dirac equation with chiral
boundary values is unique, i.e., the problem{

/Dψ = 0 in M
Bψ = 0 on ∂M,

has only the zero solution. In dimension m = 2, we recall Hörmander’s L2-estimate
method [34] which was originally developed to get the L2-existence theorem for ∂̄-
operators on weakly pseudo-convex domains by using Carleman type estimates. Later,
Shaw [48] extended this method to ∂̄b-manifolds. Here, we use a similar idea to derive
the L2-estimate for the Dirac equations and use this L2-estimate to get the uniqueness of
solutions of Dirac equations with chiral boundary values. In higher dimensions m > 2,
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we use the Weak Uniqueness Continuation Property (WUCP) for Dirac type operators
to get the uniqueness. We shall then use this uniqueness to derive some useful elliptic
estimates.

We will need the following Weitzenböck type formula (cf. [37]):

/D
2
= −∇

2
+R, (3.1)

where the curvature operator R is given by

R := 1
2ei · ej · R(ei, ej )

and R(X, Y ) = [∇X,∇Y ] − ∇[X,Y ] is the curvature of the connection ∇ = ∇0 + 0.

Theorem 3.4 (Weighted Reilly formula). Let M,E be as in Theorem 1.1 and suppose
0 ∈ Dp∗(E). Let f be a smooth function on M . Then for every ψ ∈ 0(E), we have∫
∂M

exp(f )
(
( /̄Dψ,ψ)+

m− 1
2

(h+ n(f )
)
‖ψ‖2)+

m− 1
m

∫
M

exp(f )‖ /Dψ‖2

=

∫
M

exp(f )
(
m− 1

2
1f −

(m− 1)(m− 2)
4

‖∇f ‖2 +Rψ

)
‖ψ‖2

+

∫
M

exp((1−m)f )
∥∥∥∥P(exp

(
m

2
f

)
ψ

)∥∥∥∥2

.

Here
Rψ‖ψ‖

2
= (Rψ,ψ).

Remark 3.5. (1) If m = 2, we have∫
∂M

exp(f )
(
( /̄Dψ,ψ)+

1
2
(h+ n(f ))‖ψ‖2

)
+

1
2

∫
M

exp(f )‖ /Dψ‖2

=

∫
M

exp(f )
(

1
2
1f +Rψ

)
‖ψ‖2 +

∫
M

exp(−f )‖P(exp(f )ψ)‖2.

(2) If m > 2, let f = (1− τ) log u (with τ = m/(m− 2)), then∫
∂M

u1−τ ( /̄Dψ,ψ)+
m− 1

2

∫
∂M

u−τ
(
hu−

2
m− 2

∂u

∂n

)
‖ψ‖2+

m− 1
m

∫
M

u1−τ
‖ /Dψ‖2

=

∫
M

u−τ
(
−
m− 1
m− 2

1u+Rψu

)
‖ψ‖2 +

∫
M

u1+τ
‖P(u−τψ)‖2.

Proof of Theorem 3.4. We only prove this theorem for the smooth setting. For the general
case, this can be done by density. Denote the twistor operator by

PXψ := ∇Xψ +
1
m
X · /Dψ, ∀X ∈ 0(TM), ψ ∈ 0(E).
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This twistor operator has the property

‖∇ψ‖2 = ‖Pψ‖2 +
1
m
‖ /Dψ‖2. (3.2)

In fact, since trP = 0, i.e., ei · P(ei) = γ ◦ P = 0, we have

‖∇ψ‖2 =
∑
i

∥∥∥∥Peiψ − 1
m
ei · /Dψ

∥∥∥∥2

= ‖Pψ‖2 −
2
m

∑
i

(Peiψ, ei · /Dψ)+
1
m
‖ /Dψ‖2

= ‖Pψ‖2 +
2
m

∑
i

(ei · Peiψ, /Dψ)+
1
m
‖ /Dψ‖2 = ‖Pψ‖2 +

1
m
‖ /Dψ‖2.

For every smooth function f ∈ C∞(M) and every smooth spinorψ ∈ 0(E), by using
(3.2) and (3.1) we have

1
21(exp(f )‖ψ‖2) = exp(f )

( 1
2 (1f + ‖∇f ‖

2)‖ψ‖2 + 1
21‖ψ‖

2
+ 2(∇∇fψ,ψ)

)
= exp(f )

( 1
2 (1f + ‖∇f ‖

2)
‖ψ‖2 + 2(∇∇fψ,ψ))

+ exp(f )
(
‖∇ψ‖2 − ( /D

2
ψ,ψ)+ (Rψ,ψ)

)
= exp(f )

(
1
2 (1f + ‖∇f ‖

2)‖ψ‖2 + 2(P∇fψ,ψ)−
2
m
(∇f · /Dψ,ψ)

)
+ exp(f )

(
‖Pψ‖2 +

1
m
‖ /Dψ‖2 − ( /D

2
ψ,ψ)+ (Rψ,ψ)

)
= exp(f )

(
1
21f ‖ψ‖

2
+ (Rψ,ψ)+

2−m
2m
‖∇f ‖2‖ψ‖2

)
− ( /D(exp(f ) /Dψ),ψ)

+
1
m

exp(f )‖ /Dψ‖2 +
m− 2
m

exp(f )(∇f · /Dψ,ψ)+ exp(−f )‖P(exp(f )ψ)‖2.

The last identity follows from the two identities

‖P(exp(f )ψ)‖2 = exp(2f )
∥∥∥∥Peiψ + ei(f )ψ + 1

m
ei · df · ψ

∥∥∥∥2

= exp(2f )
(
‖Pψ‖2 +

∥∥∥∥ei(f )ψ + 1
m
ei · df · ψ

∥∥∥∥2

+ 2(P∇fψ,ψ)
)

= exp(2f )
(
‖Pψ‖2 +

m− 1
m
‖ψ‖2‖∇f ‖2 + 2(P∇fψ,ψ)

)
and

( /D(exp(f ) /Dψ),ψ) = exp(f )
(
( /D

2
ψ,ψ)+ (∇f · /Dψ,ψ)

)
.
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Integrating by parts, we get∫
∂M

exp(f )
(
( /̄Dψ,ψ)+ 1

2 ((m− 1)h+ n(f ))‖ψ‖2
)

=

∫
M

exp(f )
(

1
21f ‖ψ‖

2
+ (Rψ,ψ)+

2−m
2m
‖∇f ‖2‖ψ‖2

)
+

∫
M

exp(−f )‖P(exp(f )ψ)‖2

−
m− 1
m

∫
M

exp(f )(‖ /Dψ‖2 +
m− 2
m− 1

( /Dψ,∇f · ψ)).

By using the identity

∥∥∥∥ /D(exp
(

m− 2
2(m− 1)

f

)
ψ

)∥∥∥∥2

= exp
(
m− 2
m− 1

f

)∥∥∥∥ /Dψ + m− 2
2(m− 1)

∇f · ψ

∥∥∥∥2

= exp
(
m− 2
m− 1

f

)(
‖ /Dψ‖2 +

m− 2
m− 1

( /Dψ,∇f · ψ)+
(m− 2)2

4(m− 1)2
‖∇f ‖2‖ψ‖2

)
we get∫

∂M

exp(f )
(
( /̄Dψ,ψ)+ 1

2 ((m− 1)h+ n(f ))‖ψ‖2
)

=

∫
M

exp(f )
(

1
21f ‖ψ‖

2
+ (Rψ,ψ)+

2−m
4(m− 1)

‖∇f ‖2‖ψ‖2
)

+

∫
M

exp(−f )‖P(exp(f )ψ)‖2

−
m− 1
m

∫
M

exp
(

1
m− 1

f

)∥∥∥∥ /D(exp
(

m− 2
2(m− 1)

f

)
ψ

)∥∥∥∥2

.

Set g = f/(m− 1) and σ = exp((m− 2)f/(2m− 2))ψ . Then∫
∂M

exp(g)
(
( /̄Dσ, σ )+

m− 1
2

(h+ n(g)
)
‖σ‖2)

=

∫
M

exp(g)
(
m− 1

2
1g −

(m− 1)(m− 2)
4

‖∇g‖2 +Rσ

)
‖σ‖2

+

∫
M

exp((1−m)g)
∥∥∥∥P(exp

(
m

2
g

)
σ

)∥∥∥∥2

−
m− 1
m

∫
M

exp(g)‖ /Dσ‖2. ut

It is well known that the curvature operator R of E can be calculated as

R = R0 + d0 + [ω0, 0] + [0,ω0] + [0,0],
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where ω0 is the associated connection 1-form of ∇0 (cf. [40]). In particular, ‖R‖ :=
‖R‖op ∈ L

p∗(M), where the operator norm Rop at each point is defined by

‖R‖op = sup
ψ 6=0

‖Rψ‖

‖ψ‖
.

We need the following lemma.

Lemma 3.5. SupposeM is a Riemann surface with boundary and 0 ∈ Dp∗(E). There is
a function f ∈

⋂
1<p<p∗ W

2,p(M) satisfying{
1
21f − ‖R‖ = 0 in M,
f = 0 on ∂M.

Now we can state the following L2-estimate in dimension m = 2.

Theorem 3.6 (L2-estimate). Let M,E be as in Theorem 1.1. Suppose that m = 2 and
0 ∈ Dp∗(E). Then there exists a function f ∈

⋂
1<p<p∗ W

2,p(M) such that for every
spinor ψ ∈ H 1(E),∫

∂M

exp(f )
(
( /̄Dψ,ψ)+ 1

2 (h+ n(f ))‖ψ‖2
)
+

1
2

∫
M

exp(f )‖ /Dψ‖2

≥

∫
M

exp(−f )‖P(exp(f )ψ)‖2. (3.3)

Proof. Choose f as in Lemma 3.5. Since f ∈ W 2,p(M) for all 1 < p < p∗, by us-
ing the Sobolev embedding theorem we know that f ∈ C2−2/p(M). In particular, f is
continuous. Moreover, the trace theorem implies that

f |∂M ∈ W
2−1/p,p(∂M),

and hence again the Sobolev theorem W 1−1/p,p(∂M) ⊂ Lq(∂M) shows that n(f ) ∈
Lq(∂M), where we assume 1 < p < min{2, p∗} without loss of generality and

1
q
=

1
p
−

(
1−

1
p

)
=

2− p
p

.

Hence ∣∣∣∣∫
∂M

ef n(f )‖ψ‖2
∣∣∣∣ ≤ C‖n(f )‖Lq (∂M)‖ψ‖2Lq′ (∂M) ≤ C‖ψ‖2H 1(M)

.

Here we have used the Sobolev embedding and the trace theorem

H 1/2(∂M) ⊂ Lq
′

(∂M),

where
1
2

(
1−

1
q

)
=

1
q ′
>

m− 2
2(m− 1)

= 0,
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which is equivalent to p > 1. For the remaining terms, it is easy to get∣∣∣∣∫
∂M

ef ( /̄Dψ,ψ)

∣∣∣∣ ≤ C‖ψ‖2H 1(M)
,

∫
M

ef ‖ /Dψ‖2 ≤ C‖ψ‖2
H 1(M)

,∫
M

e−f ‖P(efψ)‖2 ≤ C‖ψ‖2
H 1(M)

.

As a consequence, by using Theorem 3.4 and Remark 3.4 we know that (3.3) holds for
all ψ ∈ H 1(E) by density. ut

Corollary 3.7 (Uniqueness dimensionm = 2). LetM,E be as in Theorem 1.1. Suppose
m = 2 and 0 ∈ Dp∗(E). Then a weak solution of{

/Dψ = 0 in M,
Bψ = 0 on ∂M,

is a trivial spinor, i.e., ψ = 0.

Proof. It follows that ψ is a strong solution since /0 ∈ L2p∗(M), i.e., ψ ∈ H 1(E),
according to the elliptic estimates. By using Proposition 3.1 and Remark 3.4, we have
ψ = 0 on the boundary. Theorem 3.6 then implies that P(efψ) = 0 in M . That is, for
every tangent vector field X on M , we have

∇Xψ +X(f )ψ +
1
2X · ∇f · ψ = 0 (3.4)

in the weak sense. Notice that

(X · ∇f · ψ,ψ) = (ψ,∇f ·X · ψ) = −(ψ,X · ∇f · ψ)− 2X(f )‖ψ‖2.

As a consequence,
(X · ∇f · ψ,ψ) = −X(f )‖ψ‖2.

Therefore, it follows from (3.4) that

(∇Xψ,ψ)+
1
2X(f )‖ψ‖

2
= 0,

which means that ∇(ef ‖ψ‖2) = 0 in M , i.e., ef ‖ψ‖2 is a constant in M . Remembering
that we have proved that ψ = 0 along the boundary, we then conclude that ψ = 0 in the
whole manifold M . ut

For higher dimensions, first we have the following uniqueness theorem.

Theorem 3.8 (Uniqueness for small perturbation). Let M,E be as in Theorem 1.1 and
m > 2. There is a constant ε > 0 such that if ‖R‖Lm/2 < ε, then there is no nontrivial
solution of the boundary value problem{

/Dψ = 0 in M,
Bψ = 0 on ∂M.



686 Qun Chen et al.

Proof. The proof is a direct consequence of the Bochner formula, the Poincaré–Sobolev
inequality, Proposition 3.1 and Remark 3.4. First, according to Proposition 3.1, we know
that ψ |∂M = 0, and then the Poincaré–Sobolev inequality yields

‖ψ‖L2m/(m−2)(M) ≤ CPS‖∇ψ‖L2(M).

Second, the classical Bochner formula (or Theorem 3.4 with weight function f = 0) says

0 =
∫
M

(Rψ,ψ)+
∫
M

‖∇ψ‖2.

Now applying the Hölder and Poincaré–Sobolev inequalities, we get

0 ≥ ‖∇ψ‖2
L2(M)

− ‖R‖Lm/2(M)‖ψ‖2L2m/(m−2)(M)
≥ ‖∇ψ‖2

L2(M)
− CPSε‖∇ψ‖

2
L2(M)

.

Hence, if ε < C−1
PS , we get ∇ψ = 0. Therefore, ψ ≡ 0 in M . ut

In the general case, we still have uniqueness if we require more regularity on 0, for
example, 0 ∈ D(3m−2)/4. To see this, we recall the Weak Unique Continuation Property
(WUCP) for Dirac type operators D + V , where D is a Dirac operator with a smooth
connection and V is a potential (see [18] for V continuous, [13] for V bounded, and [35]
for V ∈ L(3m−2)/2). The operator D + V is said to satisfy the WUCP if any solution
ψ ∈ H 1(M) of (D + V )ψ = 0 that ψ vanishes in a nonempty open subset of M , also
vanishes in the whole connected component of M . The proofs of the WUCP are based
on certain Carleman type estimates. For sharper results on the structure of the zero set of
solutions of generalized Dirac equations, we refer to [8].

Theorem 3.9 (WUCP, see [35]). LetM,E be as in Theorem 1.1 and m > 2. LetD+V
be a Dirac type operator, where D is a Dirac operator with a smooth connection and
V ∈ L(3m−2)/2(M) is a potential. Then the WUCP holds for D + V .

Thanks to WUCP, we can apply some extension arguments similar to the smooth case
considered in [14] to derive the uniqueness theorem.

Theorem 3.10 (Uniqueness in dimension m > 2). Let M,E be as in Theorem 1.1 and
m > 2. Suppose that 0 ∈ Dp∗(E) with p∗ ≥ (3m − 2)/4. Then there is no nontrivial
solution of the boundary value problem{

/Dψ = 0 in M,
Bψ = 0 on ∂M.

Proof. According to Proposition 3.1 and Remark 3.4, we have ψ = 0 on the boundary.
First, there is a closed double M̃ of M and a Dirac bundle Ẽ on M̃ such that Ẽ|M = E
and

/̃D0|M = /D0,
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where /̃D0 is the associated Dirac operator of Ẽ (cf. [14]). Here we write /D = /D0 + /0

and /D0 is smooth. Extend /0 trivially to some /̃0 on M̃ , i.e.,

0̃ =

{
0 in M,
0 in M̃ \M.

Then the trivial extension ψ̃ of ψ , i.e.

ψ̃ =

{
ψ in M,
0 in M̃ \M,

is an H 1(M̃)-solution of
/̃D0ψ̃ + /̃0ψ̃ = 0.

We need only check that ψ̃ is a weak solution. For every smooth spinor ϕ on M̃ , we have∫
M̃

〈ψ̃, /̃D
∗

0ϕ + /̃0
∗

ϕ〉 =

∫
M

〈ψ, /̃D
∗

0ϕ + /0
∗
ϕ〉 =

∫
M

〈 /D0ψ + /0ψ, ϕ〉 −

∫
∂M

〈σn( /̃D0)ψ, ϕ〉

= 0.

Now we can apply the weak UCP of /̃D0+ /̃0 to show that ψ̃ = 0 in the whole manifold M̃ .
Therefore, ψ ≡ 0 in M . ut

Now we can state the main elliptic Lp-estimate.

Theorem 3.11 (MainLp-estimate). LetM,E be as in Theorem 1.1 andm ≥ 2. Suppose
that 0 ∈ Dp∗(E). Then for 1 < p < p∗, there exists a constant c = c(p, 0) > 0 such
that for any ψ ∈ W 1,p(E),

‖ψ‖W 1,p(E) ≤ c(‖ /Dψ‖Lp(E) + ‖Bψ‖W 1−1/p,p(E|∂M )
).

Proof. Consider the operator

( /D,B) : W 1,p(E)→ Lp(E)×W 1−1/p,p(E|∂M).

Since 0 ∈ L2p∗(E), this is well defined. Moreover, by Theorem 3.3, we have the Lp-
estimate

‖ψ‖W 1,p(E) ≤ c(‖ /Dψ‖Lp(E) + ‖Bψ‖W 1−1/p,p(E|∂M )
+ ‖ψ‖Lp(E)),

where c = c(p, 0) > 0.
Now one can show that the range of ( /D,B) is closed and the kernel is trivial. In fact,

the kernel is trivial by using Corollary 3.7 (for m = 2) and Theorem 3.10 (for m > 2).
Now we prove that the image is closed. Let ψn ∈ W 1,p(E) with

/Dψn→ ϕ in Lp(E), Bψn→ ψ0 in W 1−1/p,p(E|∂M).

It is clear that Bψ0 = ψ0.
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First, we assume that ‖ψn‖Lp(E) ≤ 1. Then the Lp-estimate Theorem 3.3 implies
that ψn is bounded in W 1,p(E). Hence, there exists a subsequence of ψn, denoted also
by ψn, such that ψn converges weakly to ψ in W 1,p(E) and strongly in Lp(E). Using
Theorem 3.3 again, we see that ψn is a Cauchy sequence in W 1,p(E). As a consequence,
there exists a limit of ψn in W 1,p(E) and this limit must be ψ . Hence ϕ = /Dψ and
ψ0 = Bψ .

Second, if ψn is not bounded in Lp(E), set

ψ̃n =
ψn

‖ψn‖Lp(E)
∈ W 1,p(E).

Then
/Dψ̃n→ 0 in Lp(E), Bψ̃n→ 0 in W 1−1/p,p(E|∂M).

By the same arguments as above, ψ̃n has a limit ψ̃ in W 1,p(E) such that ‖ψ̃‖Lp(E) = 1,
/Dψ̃ = 0 and Bψ̃ = 0. This is impossible since Corollary 3.7 (for m = 2) and Theo-

rem 3.10 (for m > 2) implies that ψ̃ = 0.
Hence, the closed graph theorem implies that ( /D,B) is an isometry between H 1(E)

and the range of ( /D,B). As a consequence,

‖ψ‖W 1,p(E) ≤ c(‖ /Dψ‖Lp(E) + ‖Bψ‖W 1−1/p,p(E|∂M )
),

where c = c(p, 0) > 0. ut

Remark 3.6. If p = 2, we can prove this theorem directly by using Theorems 3.3
and 3.6. First, according to Theorem 3.3, there exists a constant c = c(0) > 0 such
that

‖ψ‖H 1(E) ≤ c(‖ /Dψ‖L2(E) + ‖Bψ‖H 1/2(E|∂M )
+ ‖ψ‖L2(E))

for all ψ ∈ H 1(E). Second, Theorem 3.6 implies that

‖ψ‖L2(E) ≤ c(0)(‖ /Dψ‖L2(E) + ‖Bψ‖H 1/2(E|∂M )
).

Combining these two estimates, we complete the proof.

Remark 3.7. We can choose c = c(p, ‖/0‖p∗) > 0. See Remark 3.3.

3.4. Existence and uniqueness for solutions of Dirac equations

In this subsection, we shall consider the existence and uniqueness of solutions of the Dirac
equation with chiral boundary conditions, to find a solution ψ ∈ W 1,p(E) of{

/Dψ = ϕ in M,
Bψ = Bψ0 on ∂M,

(3.5)

where ϕ ∈ Lp(E) and Bψ0 ∈ W
1−1/p,p(E|∂M).
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Several general existence theorems for this system inH 1(E) have been derived under
some integral conditions; for example, see [10, p. 53, Theorem 7.3]. which asserts that
(3.5) is solvable in H 1(E) if and only if the following integral condition holds:∫

M

〈ϕ, η〉 = 0, ∀η ∈ ker( /D,B∗).

Moreover, this solution satisfies the L2-estimate

‖ψ‖H 1(E) ≤ c(‖ϕ‖L2(E) + ‖Bψ0‖H 1/2(E|∂M )
+ ‖ψ‖L2(E)).

But the uniqueness may not be true for a general first order elliptic partial differential
equation with an elliptic boundary condition.

Notice that in our setting, this integral condition is always satisfied for each ϕ in
L2(E) since the kernel of ( /D,B∗) is zero according to Corollary 3.7 (for m = 2) and
Theorem 3.10 (for m > 2). In fact, in our setting, we can show the existence and unique-
ness Theorem 1.1 with the use of the main Lp-estimate of Theorem 3.11.

Proof of Theorem 1.1. We only need to show the existence. We can use a method that
is similar to that for deducing the analogous theorem for second order elliptic partial
differential equations with Dirichlet boundary values (see [29, p. 241, Theorem 9.15], for
example). For convenience, we will give a detailed proof.

First, we consider the case p∗ > 2 and p = 2. The following argument is typical (see
[10, 29] for example). Let us consider the following closed subspace of H 1(E):

H 1
B(E) = {ψ ∈ H

1(E) : Bψ = 0}.

Theorem 3.11 gives the a priori estimate

‖ψ‖2
H 1(E)

=

∫
M

‖∇0ψ‖
2
+ ‖ψ‖2 ≤ C

∫
M

‖ /Dψ‖2, ∀ψ ∈ H 1
B(E).

In particular,
∫
M
‖ /Dψ‖2 is strictly coercive onH 1

B(E), so the Lax–Milgram theorem gives
ψ ∈ H 1

B(E) satisfying∫
M

〈ϕ, /Dη〉 =

∫
M

〈 /Dψ, /Dη〉, η ∈ H 1
B(E).

Denote 8 = /Dψ − ϕ ∈ L2(E). Then∫
M

〈8, /Dη〉 = 0, ∀η ∈ H 1
B(E).

Therefore 8 is a weak solution of

/D8 = 0, B∗8 = 0.

Since B∗ is elliptic, all the elliptic estimates stated for B can be stated in a similar way
(see Theorem 3.2). In particular, 8 is a strong solution, i.e., 8 ∈ H 1(E). By using the
L2-estimate of Theorem 3.6 (for B∗), we know that8 = 0. Hence /Dψ = ϕ and Bψ = 0.
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In the general case, we extend Bψ0 to a spinor ψ̃ ∈ H 1(E) such that ψ̃ |∂M = Bψ0.
Setting ψ̂ = ψ − ψ̃ , we then have{

/Dψ̂ = ϕ − /Dψ̃ in M,
Bψ̂ = 0 on ∂M.

The previous case shows that there is a solution ψ̂ ∈ H 1(E). Then ψ = ψ̂ + ψ̃ is the
desired solution of (3.5).

Second, we consider the case 1 < p < p∗. Let ϕε ∈ 0(E) be such that ϕε converges
strongly to ϕ in Lp(E) as ε→ 0. For each ε > 0, let ψε be the unique solution of

/Dψε = ϕε, Bψε = 0.

The a priori estimate of Theorem 3.11 says that ψε ∈ W 1,p(E) and is a Cauchy sequence
inW 1,p(E) since ϕε converges strongly to ϕ in Lp(E). We can assume that ψε converges
strongly toψ inW 1,p(E). Then /Dψ = ϕ and Bψ = 0. In the nonhomogeneous boundary
case, we set ψ = ψ̂ + ψ̃ where ψ̃ ∈ W 1,p(E) is an extension of Bψ0 such that ψ̃ |∂M =
Bψ0 by the extension theorem. This is possible since 1 < p < ∞. Then we choose a
solution ψ̂ ∈ W 1,p(E) such that{

/Dψ̂ = ϕ − /Dψ̃ in M,
Bψ̂ = 0 on ∂M.

Now we get a solution of (3.5). ut

4. Dirac equations along a map

We first consider the following system which is slightly more general than (1.1):{
/DψA +�AB · ψ

B
= ηA in M,

BψA = BψA0 on ∂M,
(4.1)

where A = 1, . . . , q, ηA ∈ Lp(E),BψA0 ∈ W
1−1/p,p(E|∂M) and � ∈ �1(son), i.e.,

�AB = −�
B
A. Under suitable conditions, we can solve this system.

Theorem 4.1. LetM,E be as in Theorem 1.1. Suppose that 0 ∈ Dp∗(E), d� ∈ Lp
∗

(M)

and � ∈ L2p∗(M). Then for 1 < p < p∗, (4.1) admits a unique solution. Moreover, we
have the elliptic estimate

‖ψ‖W 1,p(E) ≤ c(‖η‖Lp(E) + ‖Bψ0‖W 1−1/p,p(E|∂M )
),

where c = c(p, ‖0‖p∗ , ‖�‖L2p∗ (M) + ‖d�‖Lp∗ (M)) > 0.
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Proof. To prove this theorem, we construct a new Dirac bundle and a new chirality oper-
ator, and then we apply the existence and uniqueness for the usual Dirac equation.

Let Ẽ = ⊕nE = E ⊕ · · · ⊕ E (n summands). Then Ẽ becomes a Dirac bundle as a
Whitney sum bundle. Clifford multiplication is defined as

γ̃ (X)(ψA) := (X · ψA), ∀X ∈ TM,

i.e., γ̃ = γE Id. Here γE(X)ψA := X ·ψA stands for Clifford multiplication on E. Then
the associated 0̃ equals 0 Id, i.e.,

0̃(X)(ψA) := (0(X)ψA).

Define 0′ by
0′(X)(ψA) := (�AB(X)ψ

B).

It is clear that 0′ ∈ �1(Ad(Ẽ)). We need only check that [0′, γ̃ ] = 0 in order to prove
that 0′ ∈ Dp∗(Ẽ). In fact,

[0′, γ̃ ](X, Y )(ψA) =
(
�AB(X)(Y · ψ

B)− Y ·�AB(X)ψ
B
)
= 0.

Thus, we have constructed a new Dirac bundle Ẽ with the Dirac operator /̃D defined by

/̃D(ψA) = ( /DψA +�AB · ψ
B).

It is obvious that d(0̃ + 0′) ∈ Lp
∗

(M) and 0̃ + 0′ ∈ L2p∗(M).
Introduce an operator G̃ ∈ End(Ẽ),

G̃(ψA) := (GψA).

It is clear that

G̃2
= Id, G̃∗ = G̃, G̃γ̃ (X) = −γ̃ (X)G̃, ∀X ∈ TM.

Moreover, ∇̃G̃ = 0. In fact,

∇̃XG̃(ψ
A) = (∇XGψ

A
+�AB(X)Gψ

B) = (G∇Xψ
A
+G�AB(X)ψ

B) = G̃∇̃X(ψ
A).

In particular, G̃ is a chirality operator on Ẽ. Therefore, the associated chirality boundary
operator is

B̃(ψA) := (BψA).

Then we can use the theory of the Dirac equation (Theorem 1.1) to finish the proof. ut

Now we suppose that M is a Riemannian spin manifold with boundary ∂M and give

Proof of Theorem 1.2. If we embed N into some Euclidean space, then as shown in
Section 2, we can rewrite this boundary value problem for the Dirac equation as{

/∂9A +�AB ·9
B
= ηA in M,

B9A = BψA on ∂M,



692 Qun Chen et al.

where
�AB = [ν(8), dν(8)]AB .

In particular, d� = [dν(8), dν(8)]. Therefore, if 8 ∈ W 1,2p∗(M,N), then 8 ∈

C0(M̄,N) by using the Sobolev embedding theorem. As a consequence,

� ∈ L2p∗(M), d� ∈ Lp
∗

(M).

Hence, by using Theorem 4.1, we get a unique solution 9 ∈ W 1,p(6M ⊗8−1TRq) for
some larger q. Moreover, there exists a constant c = c(p, ‖8‖W 1,2p∗ (M)) > 0 such that

‖9‖W 1,p(M) ≤ c(‖η‖Lp(M) + ‖Bψ‖W 1−1/p,p(∂M)).

Now we want to prove that 9 is a spinor along the map 8. Introduce 9̃A = νAB9
B .

Then we need only prove that 9̃ = 0.

Claim. {
/∂9̃A +�AB · 9̃

B
= 0 in M,

B9̃A = 0 on ∂M.

If this claim is true, then using Theorem 4.1 again, we get 9̃ = 0, which completes the
proof of Theorem 1.2.

Now, we prove the claim. In fact, noticing that νABη
B
= 0, νABBψ

B
= 0 since η is a

spinor along the map8 and Bψ is the restriction of a spinor along8 to the boundary ∂M ,
we have

/∂9̃A = νAB /∂ψ
B
+ dνAB ·9

B
= −νABdνBC ·9

C
+ νABdνBC ν

C
D ·9

D
+ νABη

B
+ dνAB ·9

B

= dνAB · 9̃
B
= −dπAB · 9̃

B
= (dπAC π

C
B − π

A
C dπCB ) · 9̃

B

= (dνACν
C
B − ν

A
CdνCB ) · 9̃

B
= −�AB · 9̃

B ,

and

B9̃A = νABB9
B
= νABBψ

B
= 0. ut

Remark 4.1. Using the same method, one can prove that{
/Dψ = η ∈ Lp(E ⊗8−1V ) in M,
B9 = Bψ ∈ W 1−1/p,p((E ⊗8−1V )|∂M) on ∂M,

admits a unique solution 9 ∈ W 1,p(E ⊗8−1V ), where E is a Dirac bundle on M , V is
a Hermitian metric vector bundle on N , /D is the associated Dirac operator of E⊗8−1V ,
and the Dirac connection ∇ = ∇0 + 0 satisfies the condition 0 ∈ Dp∗(E) and 8 ∈
W 1,2p∗(M;N).

Remark 4.2. If8 is smooth, then6M⊗8−1TN is a smooth Dirac bundle; in this case,
Theorem 1.2 is just a direct corollary of Theorem 1.1.
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Now let us give some further remarks on the Schauder theory of Dirac equations. The
interior Schauder estimate for the Dirac equation is

Theorem 4.2 (see [1]). Let M,E be as in Theorem 1.1. Suppose that /0 ∈ Cα(M) for
some 0 < α < 1. Then for all M ′ b M ′′ b M ,

‖ψ‖1+α;M ′ ≤ c
(
α, dist(M ′, ∂M ′′), ‖/0‖α;M ′′

)
(‖ /Dψ‖α;M ′′ + ‖ψ‖0;M ′′).

Due to Proposition 3.1, one can also state a boundary Schauder estimate for the Dirac
equation.

Theorem 4.3. Let M,E be as in Theorem 1.1. Suppose that /0 ∈ Cα(M̄) for some 0 <
α < 1. Then

‖ψ‖1+α;M ≤ c(α, ‖/0‖α:M)(‖ /Dψ‖α;M + ‖Bψ‖1+α;∂M + ‖ψ‖0;M).

Proof. The classical argument for Schauder estimates (see [29]) can be combined with
Proposition 3.1. ut

By using the main Lp-estimates of Theorem 1.1, we can get

Theorem 4.4. Let M,E be as in Theorem 1.1. Suppose that 0 ∈ D1(E), 0 ∈ Cα(M̄)
and d0 ∈ Cα(M̄) for some 0 < α < 1. Then

‖ψ‖1+α;M ≤ c(α, ‖0‖α:M + ‖d0‖α;M)(‖ /Dψ‖α;M + ‖Bψ‖1+α;∂M).

Proof. By using the main Lp-estimates of Theorem 1.1, we know that for large p,

‖ψ‖0;M ≤ c(p, ‖0‖p∗)(‖ /Dψ‖Lp(E) + ‖Bψ‖W 1−1/p,p(E|∂M )
)

≤ c(α, ‖0‖α:M + ‖d0‖α;M)(‖ /Dψ‖α;M + ‖Bψ‖1+α;∂M).

Then applying Theorem 4.3, we prove the desired result. ut

Similarly to the case of the Lp-estimate, we can prove the following two theorems:

Theorem 4.5. Let M,E be as in Theorem 1.1. Suppose that 0 ∈ D1(E), 0 ∈ Cα(M̄)
and d0 ∈ Cα(M̄),� ∈ Cα(M̄), d� ∈ Cα(M̄) for some 0 < α < 1. Let η ∈ Cα(M̄) and
Bψ0 ∈ C

1,α(∂M). Then (4.1) admits a unique solution ψ ∈ C1,α(M̄). Moreover,

‖ψ‖1+α;M ≤ c(α, ‖0‖α;M+‖d0‖α;M , ‖�‖α;M+‖d�‖α;M)(‖ /Dψ‖α;M+‖Bψ‖1+α;∂M).

Theorem 4.6. LetM,N be as in Theorem 1.2. Let8 ∈ C1,α(M̄,N) for some 0 < α < 1.
Then the Dirac equation{

/D9 = η ∈ Cα(M̄;6M ⊗8−1TN) in M,
B9 = Bψ ∈ C1,α(∂M;6M ⊗8−1TN) on ∂M,

admits a unique solution 9 ∈ C1,α(M̄;6M ⊗8−1TN), where /D is the Dirac operator
along 8. Moreover,

‖9‖1+α;M ≤ c(α, ‖8‖1+α;M)(‖η‖α;M + ‖Bψ‖1+α;∂M).
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5. Short time existence of first order Dirac-harmonic map flows

In this section, we assume thatMm (m ≥ 2) is a compact Riemannian spin manifold with
boundary ∂M and choose a fixed spin structure on M .

Let us consider the family of coupled systems of differential equations for a map
8 : M × [0, T ] → Rq with 8 = (8A) and for a spinor field 9 : M × [0, T ] →
6M ⊗8−1TRq with 9 = (9A) along 8:

(
∂

∂t
−1

)
8A +�AB · d8

B
+ 〈�̃AB , d8B〉 = 0 in M × (0, T ],

/∂9A +�AB ·9
B
= 0 in M × [0, T ],

(5.1)

with the initial and boundary conditions{
8(x, t) = φ(x, t), (x, t) ∈ ∂M × [0, T ] ∪M × {0},
B9 = Bψ on ∂M × [0, T ],

(5.2)

where B is a chirality boundary operator.
The following two lemmas are similar to those for the harmonic map heat flow (cf.

[27, 30, 42]).

Lemma 5.1. Suppose the image of 8 lies in N and 9 is a spinor along 8. Then (8,9)
satisfies the Dirac-harmonic map flow (1.5), i.e.,{

∂t8 = τ(8)−R(8,9),
/D9 = 0,

if and only if (8,9) satisfies (5.1).

Proof. A well-known computation. ut

Lemma 5.2. Suppose that (8,9) is a solution of (5.1) which is continuous onM×[0, T ]
with φ(x, t) ∈ N for all (x, t) ∈ ∂M×[0, T ] ∪M×{0} and ψ is a spinor along the map
φ|∂M for all time in [0, T ]. Suppose 8(x, t) ∈ Ñ on M × (0, T ]. Then 8(x, t) ∈ N for
all (x, t) ∈ M × [0, T ] and 9(·, t) is a spinor along the map 8(·, t) for all t ∈ [0, T ]. In
fact, 9̃A = νAB9

B satisfies the Dirac type equation{
/∂9̃A +�AB · 9̃

B
= 0 in M,

B9̃ = 0 on ∂M.

Proof. Define ρ : Rq → Rq by ρ(z) = z− π(z) for z ∈ Rq . Consider

ϕ(x, t) = ‖ρ(8(x, t))‖2 =

q∑
A=1

‖ρA(8(x, t))‖2.
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We can see that(
∂

∂t
−1

)
ϕ(x, t) = −2‖∇ρ(8(x, t))‖2 + 2〈∂tρ −1ρ, ρ〉

= −2‖∇ρ(8(x, t))‖2 + 2
〈
νAB (∂t8

B
−18B)+ πABC〈∇8

B ,∇8C〉, ρA
〉

= −2‖∇ρ(8(x, t))‖2

− 2
〈
νAB (8)

(
�(8)BC · d8

C
+ 〈�̃(8)BC, d8C〉

)
− πABC(8)〈∇8

B ,∇8C〉, ρ(8)A
〉
.

Notice that πAB is a projection when restricted to N , so after restriction to N we obtain

νAB (8)
(
�(8)BC · d8

C
+ 〈�̃(8)BC, d8C〉

)
− πABC(8)〈∇8

B ,∇8C〉 = 0.

By the mean value theorem,

−2
〈
νAB (8)

(
�(8)BC · d8

C
+ 〈�̃(8)BC, d8C〉

)
− πABC(8)〈∇8

B ,∇8C〉, ρ(8)A
〉
≤ cϕ.

Therefore, (
∂

∂t
−1

)
ϕ ≤ cϕ.

Since ϕ ≥ 0 and ϕ = 0 on ∂M × [0, T ] ∪M ×{0}, we deduce that ϕ = 0 onM × [0, T ].
Hence 8(x, t) ∈ N for all (x, t) ∈ M × [0, T ] according to the maximum principle.

Next we show that 9 is a spinor along the map 8. In order to do this, we consider
9̃A = νAB9

B . Then

/∂9̃A = νAB /∂9
B
+∇νAB ·9

B
= −νAB∇ν

B
C ·9

C
+∇νAB ·9

B

= ∇νAB · 9̃
B
= −∇πAB · 9̃

B
= (∇πAC π

C
B − π

A
C∇π

C
B ) · 9̃

B
= −�AB · 9̃

B .

Moreover, 9̃A satisfies the boundary conditions

B9̃A = 0

for all time t ∈ [0, T ]. By the uniqueness of solutions of Dirac equations with chiral
boundary values (Theorem 4.1), we get 9̃ = 0, i.e., 9 is a spinor along 8. ut

To state the short time existence for the Dirac-harmonic map flow, we first recall some
basic facts about heat kernels on Riemannian manifolds. An important property is that the
heat kernel is almost Euclidean [20, 41]. In other words, if p is a heat kernel, then p and
E are of the same order, locally uniformly in (x, y) as t → 0+, and a similar statement
holds for the first derivatives of p and E , where

E(x, y, t) = (4πt)−m/2e− dist(x,y)2/(4t).

One can show that the Dirichlet heat kernel h(x, y, t) is also almost Euclidean [20], hence

h(x, y, t) ≤ ct−m/2e− dist(x,y)2/(4t),
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and

‖∇h(x, y, t)‖ ≤ ct−m/2−1e− dist(x,y)2/(4t) dist(x, y).

We summarize these properties in

Lemma 5.3 (see [20, 38]). For every β > 0, there exists a constant c = c(β) such that

h(x, y, t) ≤ c(β)t−m/2+β dist(x, y)−2β ,

‖∇h(x, y, t)‖ ≤ c(β)t−m/2−1+β dist(x, y)1−2β ,

‖∇nh(x, y, t)‖ ≤ c(β)t
−m/2−1+β dist(x, y)2−2β , x, y ∈ ∂M,

as t → 0+.

Proof. This is a consequence of the inequality

xβe−x ≤ ββe−β , ∀x, β > 0.

The improvement in the exponent of dist(x, y) in the third inequality is due to the fact
that the derivative is in the direction normal to ∂M . ut

Now we can prove the main Theorem 1.3. For the short time existence of the harmonic
map heat flow, we refer the reader to [27, 30, 42, 43].

Proof of Theorem 1.3. We split the proof into four steps.

Step I: Short time existence for the flow (5.1) and (5.2). Let h(x, y, t) be the Dirichlet
heat kernel of M . Define an operator T by

T u(x, t) = u0(x, t)−

∫ t

0

∫
M

h(x, y, t − τ)
(
�(u) · du+ 〈�̃(u,9(u)), du〉

)
(y, τ ) dy dτ,

where

u0(x, t) =

∫
M

h(x, y, t)φ(y, 0) dy −
∫ t

0

∫
∂M

∂h

∂ny
(x, y, t − τ)φ(y, τ ) dσ(y) dτ.

Here

�(u) = [ν(u), dν(u)],

and

�̃(u,9(u)) = 1
2R

A
BCD(u)(9(u)

C, ei ·9(u)
D)ηi =: R(u)(9(u),9(u)),

where 9(u) is the unique solution of{
/∂9A = −�(u)AB ·9

B in M,
B9A = BψA on ∂M,

according to Theorem 4.1.
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It is clear that u0 is the unique solution of
∂

∂t
u0 = 1u0 in M × (0,∞),

u0 = φ on ∂M × [0,∞) ∪M × {0}.

For every ε > 0 and each u ∈
⋂

0<t<ε C
1,0,0(M̄ × [t, ε]) ∩ C0(M̄ε), define the norm

‖u‖ := ‖u‖C0(M̄×[0,ε]) + sup
t∈[0,ε]

‖∇u(·, t)‖C0(M̄).

Let Xεφ be the completion of the following subset of C0(M̄ε):{
u ∈

⋂
0<t<ε

C1,0,0(M̄ × [t, ε]) ∩ C0(M̄ε) : u = φ on PMε

}
where

Mε := M × (0, ε], PMε := ∂M × [0, ε] ∪M × {0}.

For u ∈ Xεφ , according to Theorem 4.1 we have, for large p,

‖9(·, t)‖Cα(M̄) ≤ c(p)‖9(·, t)‖W 1,p(M) ≤ C(‖u‖)‖B90(·, t)‖W 1−1/p,p(∂M)

≤ C(‖u‖)‖B90(·, t)‖C1,α(∂M) ≤ C(‖u‖)‖Bψ‖C1,0,α(∂Mε)
.

As a consequence,
T : Xεφ → Xεφ

is well defined. For δ > 0, let Bδ = {u ∈ Xεφ : ‖u− u0‖ ≤ δ}.
According to Lemma 5.3, for every β > 0,

h(x, y, t) ≤ c(β)tβ−m/2 dist(x, y)−2β ,

‖∇h(x, y, t)‖ ≤ c(β)tβ−1−m/2 dist(x, y)1−2β ,

‖∇nh(x, y, t)‖ ≤ c(β)t
β−1−m/2 dist(x, y)2−2β , x, y ∈ ∂M.

1) We now prove that u0 ∈ X
ε
φ . Let v0 = u0 − φ. Then{

∂tv0 −1v0 = 1φ − ∂tφ =: f in MT ,

v0 = 0 on PMT .

Since φ ∈ C2,1,α(M̄T ), we know that f ∈ C0,0,α(M̄T ) and

‖f ‖C0(M̄T )
≤ c‖φ‖C2,1,0(M̄T )

, ‖f ‖C0,0,α(M̄T )
≤ c(α)‖φ‖C2,1,α(M̄T )

.

Moreover, v0 can be given by the following formula, for (x, t) ∈ MT :

v0(x, t) =

∫ t

0

∫
M

h(x, y, t − τ)f (y, τ ) dy dτ.
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The Schauder estimates imply that v0 ∈
⋂

0<t<T C
2,1,α(M̄ × [t, T ]) ∩ C0(M̄T ). The

following estimates follow by straightforward computations:

|v0(x, t)| ≤ ‖φ‖C2,1,0(M̄ε)
ε, |∇v0(x, t)| ≤ c(β)‖φ‖C2,1,0(M̄ε)

εβ−1,

for all (x, t) ∈ Mε and β ∈ (m/2, (m+ 1)/2). In fact,

|v0(x, t)| ≤

∫ t

0

∫
M

h(x, y, t − τ)|f (y, τ )| dy dτ

≤ ‖f ‖C0(M̄t )

∫ t

0

∫
M

h(x, y, t − τ) dy dτ ≤ ‖f ‖C0(M̄t )
t,

and

|∇v0(x, t)| ≤

∫ t

0

∫
M

|∇xh(x, y, t − τ)| |f (y, τ )| dy dτ

≤ c(β)‖f ‖C0(M̄t )

∫ t

0

∫
M

|t − τ |−2+β dist(x, y)1−2β dy dτ

≤ c(β)‖f ‖C0(M̄t )
tβ−m/2

for all β ∈ (m/2, (m+1)/2). Therefore u0 ∈ X
ε
φ , and for δ, ε both small we have u0 ∈ Ñ

if φ ∈ N .
2) Now we will prove that for ε small, T (Bδ) ⊂ Bδ . Let u ∈ Bδ . Then ‖u‖ ≤ C1.

Consequently,

‖�(u)‖C0(M̄×[0,ε]) = ‖[ν(u), dν(u)]‖C0(M̄×[0,ε]) ≤ c sup
t∈[0,ε]

‖∇u(·, t)‖C0(M̄) ≤ c(C1),

and

‖�̃(u,9(u))‖C0(M̄×[0,ε]) ≤ c sup
t∈[0,ε]

‖9(·, t)‖2
C0(M̄)

≤ c(C1) sup
t∈[0,ε]

‖Bψ(·, t)‖2
H 1−1/p,p(∂M)

≤ c(C1)‖Bψ‖2C1,0,α(∂̄M×[0,ε]) ≤ c(C1)C2,

for p large enough, where the second inequality has used Theorem 4.1. Hence,

‖�(u)‖C0(M̄ε)
+ ‖�̃(u,9(u))‖C0(M̄ε)

≤ c(C1, C2), ∀u ∈ Bδ.

As a consequence,

‖T u− u0‖ ≤ c(β)c(C1, C2)‖du‖C0(M̄ε)
εβ−m/2 for β ∈ (m/2, (m+ 1)/2).
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3) Now we prove that ‖T u − T v‖ ≤ 1
2‖u − v‖ for u, v ∈ Bδ and ε small. First, we

have

T u(x, t)− T v(x, t)

= −

∫ t

0

∫
M

h(x, y, t − τ)
(
�(u) · du+ 〈�̃(u,9(u)), du〉

)
(y, τ ) dy dτ

+

∫ t

0

∫
M

h(x, y, t − τ)
(
�(v) · dv + 〈�̃(v,9(v)), dv〉

)
(y, τ ) dy dτ.

Moreover, noticing that

�(u)−�(v) = [ν(u), dν(u)] − [ν(v), dν(v)]
= [ν(u)− ν(v), dν(u)] + [ν(v), dν(u)− dν(v)],

and

�̃(u,9(u))− �̃(v,9(v)) = R(u)(9(u),9(u))−R(v)(9(v),9(v))
= (R(u)−R(v))(9(u),9(u))+R(v)(9(u)−9(v),9(u))
+R(v)(9(v),9(u)−9(v)),

we have

‖�(u)−�(v)‖C0(M̄ε)
≤ c(C1, C2)‖u− v‖,

and

‖�̃(u,9(u))− �̃(v,9(v))‖C0(M̄ε)
≤ c(C1, C2)(‖u− v‖+‖9(u)−9(v)‖C0(M̄×[0,ε]))

≤ c(C1, C2)‖u− v‖.

The last inequality follows from the fact that
/∂(9(u)A −9(v)A) = −�(u)AB · (9(u)

B
−9(v)B)

+ (�(u)AB −�(v)
A
B) ·9(v)

B in M,
B(9(u)−9(v)) = 0 on ∂M.

And Theorem 4.1 implies that for large p,

‖9(u)−9(v)‖Cα(M̄) ≤ c(p)‖9(u)−9(v)‖W 1,p(M)

≤ c(p, C1, C2)‖u− v‖ ‖9(v)‖Lp(E) ≤ c(p, C1, C2)‖u− v‖.

Thus,

‖�(u) · du+ 〈�̃(u,9(u)), du〉 −�(v) · dv − 〈�̃(v,9(v)), dv〉‖Cα(M̄)
≤ c(p, C1, C2)‖u− v‖.

Using a similar argument for v0, one gets

‖T u− T v‖ ≤ c(β)c(C1, C2)ε
β−m/2

‖u− v‖

for all β ∈ (m/2, (m+ 1)/2).
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Therefore, there exists a fixed point of T in Bδ , i.e., we have proved the short time
existence for (5.1) and (5.2).

Step II: Regularity. Let (8,9) be the solution of (5.1) and (5.2) constructed above.
Theorem 4.1 implies that 9 ∈ L∞(M̄ε) and hence 8 ∈

⋂
0<t<ε C

1,0,α(M̄ × [t, ε]) ∩

C(M̄ε) by the Lp-estimate for the heat equation. For all 0 < t, τ ≤ ε, we have
/∂(9A(·, t)−9A(·, τ )) = −�AB(·, t) · (9

B(·, t)−9B(·, τ ))

+ (�AB(·, τ )−�
A
B(·, t)) ·9

B(·, τ ) in M,
B(9(·, t)−9(·, τ )) = B(ψ(·, t)− ψ(·, τ )) on ∂M.

Again by using Theorem 4.1, for large p,

‖9(·, t)−9(·, τ )‖Cα(M̄) ≤ c(p, C1, C2)|t − τ |
α/2.

Thus, 9 ∈
⋂

0<t<ε C
0,0,α(M̄ × [t, ε]) ∩ C0(M̄ε). The Schauder estimate for the heat

equation implies that 8 ∈
⋂

0<t<ε C
2,1,α(M̄ × [t, ε]) ∩ C0(M̄ε). The interior Schauder

estimate for the Dirac equation implies that 9(·, t) ∈ C2,α(M) for every t ≤ ε. If one
uses the boundary Schauder estimate, one finds that 9(·, t) ∈ C1,α(M̄) for t ≤ ε.

Suppose that
lim sup
t<T1, t→T1

‖d8(·, t)‖C0(M̄) <∞.

The discussion above implies that this flow can be extended to a larger time T ′1 > T1,
hence T1 is not the maximum time, a contradiction.

Step III: Uniqueness. Finally, we state the uniqueness. Suppose that (8i, 9i) are solu-
tions of (5.1) and (5.2). Let u = 81 −82 and η = 91 −92. Then

|∂tu−1u| ≤ C|∇u| + C|u| + C|η|, |/∂η +�1 · η| ≤ C|∇u| + C|u|.

Hence, applying Theorem 4.1 and using the same computation as for v0, we get

‖η(·, t)‖C0(M̄) ≤ C‖u‖,

and
‖u‖ ≤ C‖u‖εβ−m/2 for 0 < ε ≤ T1 and β ∈ (m/2, (m+ 1)/2),

where ‖·‖ is the norm corresponding to Mε. Thus, if ε is small, then ‖u‖ = 0, i.e., u = 0
and hence η = 0. Then we can prove the uniqueness of the Dirac-harmonic heat flow by
iteration.

Step IV: Completion of the proof. We have actually proved that 8 ∈ Ñ if φ ∈ N .
Therefore, we can use Lemma 5.2. As a consequence, 8(·, t) ∈ N and 9(·, t) ∈ 6M ×
8(·, t)−1TN for all 0 ≤ t < T1 since Bψ(·, t) ∈ (6M ⊗ φ(·, t)−1TN)|∂M for all t .
Then applying Lemma 5.1, we complete the proof of the theorem. ut



Estimates for Dirac equations 701

6. Dirac equations along a map between Riemannian disks

In this section, we discuss a Dirac equation along a smooth map φ : M = (D, λ|dz|2)→
N = (D, ρ|dw|2) where D = {|z| < 1} is the open unit disk on C. Let 6M be the spin
bundle on M . Consider a Dirac bundle 6M ⊗ φ−1TN and split it as (see [40, 53])

6M ⊗ φ−1TN = (6+M ⊗ φ−1T 1,0N)⊕ (6−M ⊗ φ−1T 1,0N)

⊕ (6+M ⊗ φ−1T 0,1N)⊕ (6−M ⊗ φ−1T 0,1N),

where

6+M = {ψ ∈ 6M : ∂z̄ · ψ = 0}, 6−M = {ψ ∈ 6M : ∂z · ψ = 0}.

We identify Clifford multiplication in the orthogonal bases ∂z, ∂z̄ with the following
matrices (see [24, 40]):

∂z = λ
1/2
(

0 0
1 0

)
, ∂z̄ = λ

1/2
(

0 −1
0 0

)
.

And the spinor ψ ∈ 6M ⊗ φ−1TN can be written as

ψ =

(
f+

f−

)
⊗ ∂φ +

(
f̃+

f̃−

)
⊗ ∂φ̄

with (
1
0

)
∈ 6+M,

(
0
1

)
∈ 6−M.

The connection on the spin bundle 6M is then given by the following operators (see
[40]):

∇
6M
∂z
=
∂

∂z
+

1
4
∂ log λ
∂z

, ∇
6M
∂z̄
=
∂

∂z̄
+

1
4
∂ log λ
∂z̄

.

Therefore, the Dirac operator on 6M ⊗ φ−1TN is

/D = 2λ−1/2

 0 −
∂

∂z
−

1
4
∂ log λ
∂z
−
∂ log ρ
∂φ

∂φ

∂z
∂

∂z̄
+

1
4
∂ log λ
∂z̄
+
∂ log ρ
∂φ

∂φ

∂z̄
0



⊕ 2λ−1/2

 0 −
∂

∂z
−

1
4
∂ log λ
∂z
−
∂ log ρ
∂φ̄

∂φ̄

∂z

∂

∂z̄
+

1
4
∂ log λ
∂z̄
+
∂ log ρ
∂φ̄

∂φ̄

∂z̄
0

 .
The chiral boundary operator [23, 24, 32] is given by

B± =
1
2

(
1 ±z−1

±z 1

)
⊕

1
2

(
1 ±z−1

±z 1

)
.
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Now we consider the Dirac equation{
/Dψ = 0 in D,
B±ψ = B±ψ0 on ∂D.

As discussed above, /Dψ = 0 is equivalent to the systems

f+z̄ +
( 1

4 (log λ)z̄ + (log ρ)φφz̄
)
f+ = 0, f−z +

( 1
4 (log λ)z + (log ρ)φφz

)
f− = 0,

and

f̃+z̄ +
( 1

4 (log λ)z̄ + (log ρ)φ̄ φ̄z̄
)
f̃+ = 0, f̃−z +

( 1
4 (log λ)z + (log ρ)φ̄ φ̄z

)
f̃− = 0,

where the spinor ψ has the form

ψ =

(
f+

f−

)
⊗ ∂φ +

(
f̃+

f̃−

)
⊗ ∂φ̄ .

Let g be a solution of the Riemann–Hilbert problem{
gz̄ =

1
4 (log λ)z̄ + (log ρ)φφz̄ in D,

Re g = log(λ1/4ρ1/2) on ∂D.

All solutions can be given by the following formula [11, p. 71, Theorem 21]:

g(z) = i Im g(0)+ log λ1/4(z)+
1

2πi

∫
∂D

log(ρ(φ(ζ ))1/2)
ζ

ζ + z

ζ − z
dζ

+
1

4πi

∫
D

(
(log ρ)φφζ̄ (ζ )

ζ

ζ + z

ζ − z
+
(log ρ)φ̄ φ̄ζ (ζ )

ζ̄

1+ zζ̄
1− zζ̄

)
dζ ∧ dζ̄

for all z ∈ D. Then

f+z̄ + gz̄f
+
= 0, f−z̄ +

(
(log ρ + log λ1/2)z̄ − gz̄

)
f− = 0,

and

f̃+z̄ +
(
(log ρ + log λ1/2)z̄ − gz̄

)
f̃+ = 0, f̃−z̄ + gz̄f̃

− = 0.

Therefore, there exist four holomorphic functions A+, A−, Ã+, Ã− such that

f+ = e−gA+, f− = λ−1/2ρ−1eḡA−, f̃+ = λ−1/2ρ−1egÃ+, f̃− = e−ḡÃ−.

The chirality boundary condition B±ψ = B±ψ0 is now equivalent to

A+ ± z−1A− = λ1/4ρ1/2ei Im g(f+0 ± z
−1f−0 ),

Ã+ ± z−1Ã− = λ1/4ρ1/2e−i Im g(f̃+0 ± z
−1f̃−0 ),
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for z ∈ ∂D, where

ψ0 =

(
f+0
f−0

)
⊗ ∂φ +

(
f̃+0

f̃−0

)
⊗ ∂φ̄ .

Since the index of z−1 is −1, the solutions A+, A−, Ã+, Ã− must be unique accord-
ing to Theorem A.1 (see Appendix A). In particular, f+, f−, f̃+, f̃− are independent
of the choice of g. In fact, any other choice of g is g + ic where c is some real number.
Then the solutionsA+, A−, Ã+, Ã− must be replaced by eicA+, e−icA−, e−icÃ+, eicÃ−

respectively. As a consequence, f+, f−, f̃+, f̃− do not change.
Next, we construct these solutions by using Theorem A.1. Denote

F(z) :=
1

2πi

∫
∂D

λ(ζ )1/4ρ(φ(ζ ))1/2ei Im g(ζ )(f+0 (ζ )± ζ
−1f−0 (ζ ))

ζ − z
dζ, z /∈ ∂D,

F̃ (z) :=
1

2πi

∫
∂D

λ(ζ )1/4ρ(φ(ζ ))1/2e−i Im g(ζ )(f̃+0 (ζ )± ζ
−1f̃−0 (ζ ))

ζ − z
dζ, z /∈ ∂D.

Then, for z ∈ D,

A+(z) = F(z), A−(z) = ±z−1F(1/z̄), Ã+(z) = F̃ (z), Ã−(z) = ±z−1F̃ (1/z̄)

are the solutions.
To summarize the previous discussion and using Theorem A.2 (see Appendix A), we

have

Theorem 6.1. Suppose that φ ∈ C1+α(D̄) and B±ψ0 ∈ C
1+α(∂D) for some α ∈ (0, 1).

Then there exists a unique solution ψ ∈ C1+α(D̄) of{
/Dψ = 0 in D,
B±ψ = B±ψ0 on ∂D.

Moreover, there exists a constant c = c(α) such that

‖ψ‖1+α;D ≤ c‖B±ψ0‖1+α;∂D‖φ‖1+α;D.

Remark 6.1. When the domain is D = {|z| < 1}, the MIT bag boundary operator is
given by

B±MIT =
1
2

(
1 ∓iz−1

±iz 1

)
⊕

1
2

(
1 ∓iz−1

±iz 1

)
.

The index of ∓iz−1 is −1 and therefore we can use Theorems A.1 and A.2. In particular,
the above theorem is also true for MIT bag boundary value conditions.
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Appendix A. The boundary value problem for the ∂̄-equation

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plain C. We say that
(A+, A−) is a holomorphic function pair on D if A+, A− are two holomorphic functions
on D. Consider the transformation

Ã+(z) := A+(z), ∀z ∈ D+ := D,

Ã−(z) := A−(1/z̄), ∀z ∈ D− := C̄ \ D̄.

Then Ã+ and Ã− are holomorphic in D+ and D− respectively. Moreover, if A+, A−

satisfy the boundary condition

A+ − ϕA− = f on ∂D,

then Ã+, Ã− satisfy the boundary condition

Ã+ − ϕÃ− = f on ∂D.

Theorem A.1 (see [11, Theorems 5, 14, 15]). Suppose that ϕ ∈ Cα(∂D) with ϕ(ζ ) 6= 0
for all ζ ∈ ∂D, where 0 < α < 1. Let f ∈ Cα(∂D) and κ be the index of ϕ. If κ ≥ 0,
then there exist exactly κ + 1 linearly independent holomorphic function pairs (A+, A−)
on D such that

A+ − ϕA− = 0 on ∂D.

If κ = −1, then there exists a unique holomorphic function pair (A+, A−) such that

A+ − ϕA− = f on ∂D.

Moreover, A± ∈ Cα(D̄) ∩ A(D). In fact, if we set

γ (z) :=
1

2πi

∫
∂D

log(ζϕ(ζ ))
ζ − z

dζ, z /∈ ∂D,

ψ(z) :=
1

2πi

∫
∂D

f (ζ )e−γ (ζ )

ζ − z
dζ, z /∈ ∂D,

then

A+(z) = eγ (z)ψ(z), A−(z) = z−1eγ (1/z̄)ψ(1/z̄), z ∈ D.

Moreover, there exists a constant c = c(α) such that

‖A±‖α;D ≤ c‖ϕ‖α;D‖f ‖α;D.

We also need the following Schauder estimate.
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Theorem A.2 (see [11, Theorems 5, 29]). Suppose that f ∈ Cα(D̄) and h ∈ C1+α(∂D)

for some 0 < α < 1. Then every solution of{
gz̄ = f in D,
Re g = h on ∂D.

is of class C1+α(D̄). Moreover, there exists a constant c = c(α) such that

‖g‖1+α;D ≤ c(‖f ‖α;D + ‖h‖1+α;∂D + |Im g(0)|).
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