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2616 Q. Chen

1 Introduction

Dirac-harmonic maps were introduced in [4,5] as a geometric analytic model corresponding
to the supersymmetric nonlinear σ -model of quantum field theory [9,12].

Let us describe the geometric setting. Let (M, g) be a spin manifold with a fixed spin
structure, and �M the spinor bundle over M , on which we chose a Hermitian metric 〈·, ·〉.
The Levi-Civita connection ∇ on �M is compatible with 〈·, ·〉. Let (N , h) be a Riemannian
manifold, � a map from M to N , and �−1T N the pull-back bundle of T N by �. On the
twisted bundle �M ⊗ �−1T N there is a metric (still denoted by 〈·, ·〉) induced from the
metrics on �M and �−1T N . There is a connection, still denoted by ∇, on �M ⊗ �−1T N
naturally induced from those on �M and �−1T N .

The Dirac operator along the map � is defined as

/D� := ei · ∇ei �

= ∂/ψα ⊗ θα + ei · ψα ⊗ ∇ei θα,

where we write a cross-section � of �M ⊗ �−1T N locally as � = ψα ⊗ θα , {ψα} are
local cross-sections of �M , and {θα} are local cross-sections of �−1T N , {ei } is a local
orthonormal basis on M , ∂/ := ei · ∇ei is the usual Dirac operator on M and “X ·” stands for
the Clifford multiplication by the vector field X on M . Here and in the sequel, we use the
usual summation convention.

Consider the functional

L(�,�) = 1

2

∫
M

(‖d�‖2 + 〈
�, /D�

〉)
.

The critical points (�,�) have to satisfy in M◦ the following Euler-Lagrange equations
for L(�,�) (c.f. [4]):

{
τ(�) = 1

2

〈
ψα, ei · ψβ

〉
RN (θα, θβ)�∗(ei ) ≡ R(�,�),

/D� = 0,
(1.1)

where RN (X, Y ) := [∇X ,∇Y ]−∇[X,Y ], for X, Y ∈ �(T N ), stands for the curvature operator
of N , and τ(�) is the tension field of �. Solutions of (1.1) are called Dirac-harmonic maps
from M to N . When M has nonempty boundary ∂M , then we need to impose appropriate
boundary conditions for (�,�), see e.g. [6,7,22].

When the dimension of the domain manifold M is one, Dirac-harmonic maps are called
Dirac-geodesics. The corresponding functional is of the form

L(γ,�) = 1

2

(∫
M

‖γ̇ ‖2 + 〈
�, /D�

〉)
, (1.2)

where γ̇ denotes the spatial derivative dγ /ds, M is an interval, say [0, 1] in R
1.

In [11], Isobe introduced a modified functional

LF (γ,�) = 1

2

(∫
S1

‖γ̇ ‖2 + 〈
�, /D�

〉) −
∫
S1

F(γ,�),

where F is some suitable function. The critical points (γ,�) are called the nonlinear Dirac-
geodesics. Existence results were obtained in [11] via an approach from critical point theory,
under some conditions on the function F > 0 and assumptions on the metric of the target N .
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Dirac-geodesics and their heat flows 2617

Recently, Branding [2,3] introduced the following regularized functional:

Lε(γ,�) = 1

2

(∫
S1

‖γ̇ ‖2 + 〈
�, /D�

〉 + ε| /D�|2
)

,

where ε > 0 is a parameter; critical points of it are called regularized Dirac-geodesics. He
proved the global existence and convergence of the heat flow of closed regularized Dirac-
geodesic when ε is large. However, the final existence of Dirac-geodesics cannot be obtained
by removing the regularization, i.e., by letting ε → 0.

It is thus a natural question to define a suitable heat flow for Dirac-geodesics and study
its global existence and asymptotic behavior. This is the main purpose of the present paper.

Letσ : [0, 1] −→ N be a smooth curve. For γ : [0, 1] × [0, T ) −→ N and X (·, t), Y (·, t)
vector fields along the curve γ (·, t), consider the system

⎧⎪⎨
⎪⎩

γ ′ = ∇γ̇ γ̇ + R(X, Y )γ̇ , on (0, 1) × (0, T ),

∇γ̇ X = 0, on (0, 1] × [0, T ),

∇γ̇ Y = 0, on [0, 1) × [0, T ),

(1.3)

with initial-boundary value conditions
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ (s, 0) = σ(s), s ∈ (0, 1),

γ (0, t) = x0, γ (1, t) = y0, t ∈ [0, T ),

X (0, t) = X0, t ∈ [0, T ),

Y (0, t) = Y0, t ∈ [0, T ),

(1.4)

where x0, y0 are two fixed points in N , X0, Y0 ∈ Tx0N are two fixed tangent vectors, γ ′

denotes the time derivative γ ′ = ∂γ

∂t
.

The system (1.3) constitutes the heat flow for theEuler-Lagrange equation of the functional
(1.2), see Lemma 2.1 in Sect. 2. In fact, (1.3) can be viewed as a parabolic system with extra
constraining equations satisfied by the field �, which can be reduced to equations for two
parallel vector fields X and Y along the underlying curve γ and hence can be easily solved.
The fact that with this elliptic-parabolic system we get a better handle on the existence
than other approaches seems to indicate that this is the right parabolic version of the Dirac-
geodesic problem. Instead of trying to also turn the first-order Dirac equations for X and Y
into parabolic equations, we rather treat them as first order constraints along the second order
parabolic flow for γ . Thus, in particular, we can apply elliptic estimates for X and Y along
the flow and thereby control the inhomogeneous term in the flow for γ .

The reasonwhywe only consider the flowofDirac-geodesics (γ,�) defined on an interval
[0, 1] rather than on the circle S1 is that, in general, one can not expect that the parallel vector
fields X, Y can be defined on the whole S1. Nevertheless, γ could be a closed curve. For the
heat flow of Dirac-harmonic maps from higher dimensional manifolds with boundary, see
[6]. We will prove the following global existence result for the Dirac-geodesic heat flow:

Theorem 1.1 Let Nn be a Riemannian manifold. Then there exists a unique solution of (1.3)
and (1.4) for all t ∈ [0,+∞).

Recall that for the usual geodesic heat flow, Ottarsson [18] proved the long-time existence
and uniqueness of a solution for smooth initial data, which has been recently extended by
Lin and Wang [17] to W 1,2 initial data. However, the convergence of the geodesic flow is
unexpectedly subtle. Although it is proved in [18] that there is a sequence {tk}with tk → +∞
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2618 Q. Chen

(k → +∞), such that γ (tk) → γ∞, the convergence of γ (t) need not to be true in general,
see the example of Topping (c.f. [8,23]). Choi and Parker [8] proved the convergence of the
geodesic heat flow for generic metrics, the so-called bumpy metrics on the target manifold
N .

Koh [15] proved the global existence of the magnetic geodesic heat flow:

γ ′ = ∇γ̇ γ̇ + Z(γ ),

where Z ∈ Hom(T M, T M) is the so-called Lorenze force, namely, � := h(·, Z(·)) is a
closed 2-form on the target (N , h). Examples show that the convergence is also not true in
general.

If N is the round 2-sphere S2(1) and x0, y0 ∈ N with d(x0, y0) = π , then one can find
initial-boundary data (σ, X0, Y0) such that the Dirac-geodesic flow (1.3) and (1.4) cannot
converge to a Dirac-geodesic connecting x0 and y0 (see Theorem 3.3 and Remark 3.1).

This means that in general one cannot expect the convergence of the global solution of
the Dirac-geodesic heat flow (1.3) and (1.4).

A natural problem is then to study the asymptotic behavior of the above global solution.
Notice that if N is a Riemann surface, then X � ∧ Y � = cωγ for some constant c under the
boundary conditions (see Remark 4.1), where X � denotes the 1-form dual to the vector field
X and ω is the volume form of N . This special property in the surface case is useful for
estimating the kinetic energy, but it does not hold in general in higher dimensions. We will
prove the following:

Theorem 1.2 Let N 2 be a surface with negative Gauss curvature κ . If

|c| <
2π√

κ2 + 4
∥∥∇√−κ

∥∥2 − κ

, (1.5)

then the kinetic energy density k(γ ) = 1
2

∥∥γ ′∥∥2 decays exponentially, i.e.,
k(γ (s, t − 1)) ≤ Ce

(
2c2

∥∥∇N√−κ
∥∥2+2π |cκ|−2π2

)
t
∫ 1

0
k(σ )ds, ∀t > 1,

where C is a positive constant dependent only on the geometry of N .

Remark 1.1 We note that it follows from (1.5) that

c2
∥∥∥∇N√−κ

∥∥∥2 + π |cκ| − π2 < 0.

The rest of the paper is organized as follows: in Sect. 2 we derive the Euler-Lagrange
equations of the function L; in Sect. 3, we discuss Dirac-geodesics on surfaces and classify
Dirac-geodesics on the standard 2-sphere S2(1) (Theorem 3.3) and the hyperbolic plane
H
2 (Theorem 3.5), and derive existence results on topological spheres (Theorem 3.4) and

hyperbolic surfaces (Theorem 3.6). These solutions constitute new examples of nontrivially
coupled Dirac-harmonic maps; see [14] for an explicit example of coupled Dirac-harmonic
map from surfaces and [1,5] for constructions and existence of uncoupled Dirac-harmonic
maps (in the sense that the map part is an ordinary harmonic map) from surfaces and high
dimensional manifolds; in Sect. 4, we prove the global existence of the Dirac-geodesic flow
(Theorem 1.1) and the asymptotic property of the solution (Theorem 1.2).

The authors would like to thank the referee for his/her careful reading of our paper and
the constructive and helpful comments.
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Dirac-geodesics and their heat flows 2619

2 Preliminaries

2.1 Spin bundle �R

First, let us recall some basic notions from spin geometry. We refer to [10,11,13,16] for
additional references. Consider the real line R with the standard metric and let d

dr be the unit
tangent vector. The Clifford bundle Cl(R) is the quotient bundle

Cl(R) =
∞∑
k=0

⊗k
R/I (R)

where I (R) is the bundle of ideals, i.e., the bundle whose fibre at r ∈ R is the two-sided
I (TrR) in

∑∞
k=0 ⊗k

R generated by elements v ⊗ v + ‖v‖2 for v ∈ TrR. It is easy to check
that Cl(R) = R×C, i.e., a trivial bundle with fibre the complex line. Obviously, the principal
SO-bundle PSO(R) of R is just the real line R, and the principal Spin-bundle of R becomes
to R × Z2. By definition, a spin structure on R is a lift of PSO(R) to PSpin(R). Thus, there
are two spin structures on R, the trivial one and the non-trivial one. However, these two spin
structures are equivalent to each other.

Notice that Cl1 ∼= Cl02 (the even parts ofCl2) via the correspondenceCl1 � x = x0+x1 �→
x0+e2 ·x1 ∈ Cl2, where x0 and x1 are the even parts and odd parts of x respectively. Identify
R as a subspace of R2 via the canonical inclusion R � x �→ (x, 0) ∈ R

2. It is well known
that Cl2 is isomorphic to the 2 × 2-matrix algebra over C via

1 �→
(
1 0
0 1

)
, e1 �→

(√−1 0
0 −√−1

)
, e2 �→

(
0

√−1√−1 0

)
, e1 · e2 �→

(
0 −1
1 0

)
.

Introduce the spinor space �2 := C
2 and the chiral operator G := √−1e1 · e2, then Cl2

acts on the spinor space. Moreover, this chiral operator splits �2 into ±-eigenspaces �±
2 .

It is easy to see that �+
2 = C

(
1√−1

)
∼= C and �−

2 = C

(
1

−√−1

)
∼= C. Thus, we

get two representation spaces of Cl1, i.e., �±
2 , and in particular, of Spin1. Moreover, as a

representation of Spin1,�
±
2 are equivalent to each other. This�+

2 is the spinor space of Spin1
and we write S = �+

2 . The associated bundle of PSpin(R) via the representation of Spin1 is
called the spinor bundle and is denoted by �R ∼= R × S. By this convention, we know that

the Clifford product on spinors is given through Cl(R) � d
dr �→

(
0 1
1 0

)
. Since �+

2
∼= C,

this Clifford product is simply given by the complex multiplication by
√−1.

The connection on the spinor bundle�R is the canonical lift of the Levi-Civita connection
d
dr on TR ∼= R × R to �R ∼= R × C. The Dirac operator then is /∂ = √−1 d

dr .

2.2 Dirac-geodesics on Riemannian manifolds

Let N be a Riemannian manifold, and γ : [0, 1] −→ N be a curve and � ∈
�

(
�[0, 1] ⊗ γ −1T N

)
be a spinor along the curve γ . We identify the spinor � as a complex

vector field along the curve γ and introduce � = X + √−1Y where X, Y are two vector
fields along the curve γ . By (1.1), the Dirac-harmonic map (γ,�) satisfies the following
system {

τ(γ ) = R(γ,�),

/D� = 0.
(2.1)
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2620 Q. Chen

Lemma 2.1 (2.1) is equivalent to the following system⎧⎪⎨
⎪⎩

∇γ̇ γ̇ + R(X, Y )γ̇ = 0,

∇γ̇ X = 0,

∇γ̇ Y = 0,

(2.2)

where γ̇ denotes the tangent vector field of γ .

Proof Choose a local orthonormal frame fields {ei } of N and denote the unit tangent vector
field over [0, 1] by ∂t , then a direct computation implies that

τ(γ ) − R(γ,�) = ∇γ̇ γ̇ − 1

2

〈
�i , ∂t · � j

〉
R(ei , e j )γ̇ = ∇γ̇ γ̇ − 1

2

〈
�i ,

√−1� j
〉
R(ei , e j )γ̇

= ∇γ̇ γ̇ +
√−1

2
�i �̄ j R(ei , e j )γ̇

= ∇γ̇ γ̇ +
√−1

2
(Xi + √−1Y i )(X j − √−1Y j )R(ei , e j )γ̇

= ∇γ̇ γ̇ +
√−1

2

((
Xi X j + Y iY j

)
+ √−1

(
Y i X j − XiY j

))
R(ei , e j )γ̇

= ∇γ̇ γ̇ + R(X, Y )γ̇ ,

and

/D� = ∂t · ∇∂t� = √−1∇γ̇ (X + √−1Y ) = √−1∇γ̇ X − ∇γ̇ Y.

��
Definition 2.1 ADirac-harmonic map (γ, X, Y ) as in (2.2) is called a Dirac-geodesic on N .
We say that (γ, X, Y ) is closed if γ is closed.

Remark 2.1 By a “closed” Dirac-geodesic, we mean that the curve is closed, but the spinor
need not close up on S1. On the other hand, it is also interesting to consider closed Dirac-
geodesics defined on S1, which can be equipped with two different spin structures.

Lemma 2.2 If (γ, X, Y ) is a Dirac-geodesic, then ‖γ̇ ‖ , ‖X‖ , ‖Y‖ , 〈X, Y 〉 are all constant
along γ .

Proof Since X and Y are parallel vector fields along the curve γ , it follows that ‖X‖ , ‖Y‖
and 〈X, Y 〉 are all constant. On the other hand,

1

2

d

dt
‖γ̇ ‖2 = 〈∇γ̇ γ̇ , γ̇

〉 = −〈R(X, Y )γ̇ , γ̇ 〉 = 0,

which implies that ‖γ̇ ‖ is a constant. ��

Remark 2.2 Suppose (γ̃ , X̃ , Ỹ ) is a Dirac-geodesic defined in (0, 1) with
∥∥∥ ˙̃γ

∥∥∥ = ε−1 > 0.

Define γ (t) = γ̃ (εt) and �(t) = θ
√

ε�̃(εt) where θ ∈ C is a constant with ‖θ‖ = 1, then
(γ, X, Y ) is a Dirac-geodesic with unit-speed defined in [0, ε].

Suppose σ : [0, 1] −→ N is aC1-curve so that σ([0, 1]) is bounded in N , then there exists
an open neighborhood N ′ of σ([0, 1]) with compact closure so that N ′ can be (smoothly)
isometrically embedded into some Euclidean space Rq . If necessary, by choosing a smaller
neighborhood, we may assume that there is a bounded tubular neighborhood Ñ of N ′ in
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Dirac-geodesics and their heat flows 2621

R
q . Let π : Ñ −→ N ′ be the nearest point projection denoted by π = (π1, π2, . . . , πq) =

(π A)1≤A≤q . By choosing an even smaller N ′,wemayassume thatπ canbe extended smoothly
to the whole R

q so that each π A is compactly supported. Hence, in particular, π A, π A
B =

∂π A

∂Z B , π A
BC = ∂2π A

∂Z B∂ZC , π A
BCD = ∂3π A

∂Z B∂ZC ∂ZD , etc. are bounded, where Z = (Z A) are standard
coordinates of Rq . Notice that dπN ′ is an orthogonal projection.

The functional L can be written as

L(γ, X, Y ) = 1

2

(∫ 1

0

(
γ̇ A

)2 + Ẋ AY A − X AẎ A
)

.

Next, we want to derive the Euler-Lagrange equations of L . For any smooth map η :
[0, 1] −→ R

q and any smooth real functions ξ A, ζ A on (0, 1), we consider the variation

γt = π(γ + tη), X A
t = π A

N (γt )
(
XB + tξ B

)
, Y A

t = π A
B (γt )

(
Y B + tζ B

)
.

It is easy to check that

γ0 = γ, X0 = X, Y0 = Y,

∂γ A
t

∂t

∣∣∣∣
t=0

= π A
B (γ )ηB ,

and

∂X A
t

∂t

∣∣∣∣
t=0

= π A
B (γ )ξ B + π A

BC (γ )πC
D (γ )XBηD,

∂Y A
t

∂t

∣∣∣∣
t=0

= π A
B (γ )ζ B + π A

BC (γ )πC
D (γ )Y BηD .

Moreover, if γ ⊂ N and X, Y are two vector fields on N along the curve γ , then

νA
B (γ )γ̇ B = 0, νA

B (γ )XB = 0, νA
B (γ )Y B = 0,

where νA
B := δAB − π A

B . The following relationship will be used later:

π A
B (γ )π B

C (γ ) = π A
C (γ ), π A

BC (γ ) = π A
CB(γ ), π A

B (γ ) = π B
A (γ ), π A

BC (γ )γ̇C = π B
AC γ̇C .

Theorem 2.3 Using the above notations, the Euler-Lagrange equations for L become⎧⎪⎨
⎪⎩

γ̈ A − π A
BC γ̇ B γ̇ C + (

π A
B πC

BDπC
EFY

DXE − π A
B πC

BDπC
EF X

DY E
)
γ̇ F = 0,

Ẋ A − π A
BC γ̇ B XC = 0,

Ẏ A − π A
BC γ̇ BYC = 0.

Remark 2.3 Denote

�A
B :=

(
π A
C (γ )πC

BD(γ ) − π A
CD(γ )πC

B (γ )
)

γ̇ D, RA
GDE := π A

B πC
BDπG

F πC
EF − πG

B πC
BDπ A

F πC
EF ,

then the Euler-Lagrange equations for L can be rewritten as⎧⎪⎨
⎪⎩

γ̈ A + �A
B γ̇ B − RA

BCD(γ )γ̇ B XCY D = 0,

Ẋ A + �A
B X

B = 0,

Ẏ A + �A
BY

B = 0.

Moreover, �A
B = −�B

A .
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2622 Q. Chen

Proof of Remark 2.3 First, we check that �A
B = −�B

A .

�A
B =

(
π A
C πC

BD − π A
CDπC

B

)
γ̇ D = πC

A π B
CD γ̇ D − πC

AD γ̇ Dπ B
C

= −
(
π B
C πC

AD − π B
CDπC

A

)
γ̇ D =: −�B

A .

Second,

�A
B γ̇ B =

(
π A
C πC

BD − π A
CDπC

B

)
γ̇ D γ̇ B = π A

C πC
BD γ̇ D γ̇ B − π A

CDπC
B γ̇ D γ̇ B = −π A

BC γ̇ B γ̇ C .

Here we have used π A
C (γ )πC

BD(γ )γ̇ D γ̇ B = 0. To see this identity, we begin with the identity
π A
B (γ )π B

C (γ ) = π A
C (γ ), then

π A
BDπ B

C γ̇ D + π A
B π B

CD γ̇ D = π A
CD γ̇ D .

Hence, multiplying both sides by γ̇ C , we get that

π A
C (γ )πC

BD(γ )γ̇ D γ̇ B = 0.

Third, notice that π A
B (γ )XB = X A, we have

π A
BC γ̇ C X B + π A

B Ẋ B = Ẋ A,

then multiplying both sides by πD
A (γ ), we get that π A

B (γ )π B
CD(γ )γ̇ C XD = 0. By a similar

computation,

�A
B X

B = −π A
BC (γ )γ̇ B XC , �A

BY
B = −π A

BC (γ )γ̇ BYC .

Finally,

RA
GDE γ̇ G XDY E =

(
π A
B πC

BDπG
F πC

EF − πG
B πC

BDπ A
F πC

EF

)
γ̇ G XDY E

= π A
B πC

BD γ̇ FπC
EF X

DY E − γ̇ BπC
BDπ A

F πC
EF X

DY E

=
(
π A
B πC

BDπC
EF X

DY E − π A
B πC

BDπC
EFY

DXE
)

γ̇ F .

��
Proof of Theorem 2.3 Suppose η, ξ, ζ has compact support in (0, 1). Then

dL(γt , Xt , Yt )

dt

∣∣∣∣
t=0

=
∫ 1

0
γ̇ ′A γ̇ A + 1

2

∫ 1

0

(
Ẋ ′AY A + Ẋ AY ′A)

− 1

2

∫ 1

0

(
X ′AẎ A + X AẎ ′A)

=
∫ 1

0

∂
(
π A
B ηB

)
∂s

γ̇ A +
∫ 1

0

∂
(
π A
B (γ )ξ B + π A

BC (γ )πC
D (γ )XBηD

)
∂s

Y A

∫ 1

0
Ẋ A

(
π A
B (γ )ζ B + π A

BC (γ )πC
D (γ )Y BηD

)
− 1

2

(
X ′AY A + X AY ′A)∣∣∣1

0

=
∫ 1

0

(
π A
B η̇B + π A

BC γ̇ CηB
)

γ̇ A −
∫ 1

0

(
π A
B (γ )ξ B + π A

BC (γ )πC
D (γ )XBηD

)
Ẏ A

∫ 1

0
Ẋ A

(
π A
B (γ )ζ B + π A

BC (γ )πC
D (γ )Y BηD

)

+ 1

2

(
π A
B (γ )ξ B + π A

BC (γ )πC
D (γ )XBηD

)
Y A

∣∣∣1
0

− 1

2

(
π A
B (γ )ζ B + π A

BC (γ )πC
D (γ )Y BηD

)
X A

∣∣∣1
0
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= −
∫ 1

0

(
γ̈ A − π A

BC γ̇ B γ̇ C +
(
π A
B πC

BDπC
EFY

DXE − π A
B πC

BDπC
EF X

DY E
)

γ̇ F
)

ηA

+
∫ 1

0

(
πD
BCπC

A Y
B

(
Ẋ D − πD

EF γ̇ E X F
)

− πD
BCπC

A X B
(
Ẏ D − πD

EF γ̇ EY F
))

ηA

+
∫ 1

0

(
Ẋ A − π A

BC γ̇ B XC
)

ζ A −
∫ 1

0

(
Ẏ A − π A

BC γ̇ BYC
)

ξ A

+
(

γ̇ AηA + 1

2
Y Aξ A − 1

2
X Aζ B

)∣∣∣∣
1

0

= −
∫ 1

0

(
γ̈ A − π A

BC γ̇ B γ̇ C +
(
π A
B πC

BDπC
EFY

DXE − π A
B πC

BDπC
EF X

DY E
)

γ̇ F
)

ηA

+
∫ 1

0

(
πD
BCπC

A Y
B

(
Ẋ D − πD

EF γ̇ E X F
)

− πD
BCπC

A X B
(
Ẏ D − πD

EF γ̇ EY F
))

ηA

+
∫ 1

0

(
Ẋ A − π A

BC γ̇ B XC
)

ζ A −
∫ 1

0

(
Ẏ A − π A

BC γ̇ BYC
)

ξ A.

��

3 Dirac-geodesics on surfaces

Assume dim N = 2, i.e., N is a surface. Put X � ∧ Y � = cωγ , where ω is the volume form of
N and c is a function of t (see Lemma 2.2). Let Jx be the rotation by π/2 in Tx N measured
with the metric and the orientation chosen on N .

Lemma 3.1 (γ, X, Y ) is a Dirac-geodesic on a surface N if and only if
{

∇γ̇ γ̇ = cκ(γ )Jγ (γ̇ ),

∇γ̇ X = ∇γ̇ Y = 0,

where c is a constant such that X � ∧ Y � = cωγ and κ is the Gauss curvature of N .

Proof The proof follows easily from the following identity:

R(X, Y )γ̇ = R(X ∧ Y )γ̇ = R(cωγ )γ̇ = −cκ(γ )Jγ (γ̇ ).

��

Recall that a curve γ satisfying ∇γ̇ γ̇ = cκ(γ )Jγ (γ̇ ) is called a (cκ-)magnetic geodesic
and models the motion of a charge in a magnetic field with magnetic form cκω. Therefore,
each Dirac-geodesic on a surface can be viewed as a cκ-magnetic geodesic coupled with two
parallel tangent vector fields along the magnetic geodesic.

According to Remark 2.2, we can choose an orthonormal basis e1 = γ̇ , e2 along the curve
γ . Denote

X (t) = a(cos( f (t))e1 + sin( f (t))e2), (3.1)

Y (t) = b(cos( f (t) + θ)e1 + sin( f (t) + θ)e2), (3.2)

where a, b > 0 and θ are three constants, and f, g ∈ C1[0, ε].
The following theorem gives a geometric description of Dirac-geodesics.
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Theorem 3.2 Let γ be a unit-speed curve with geodesic curvature κg on a surface M, a, b, θ
constants with a, b ≥ 0. If κ is the Gauss curvature of M, then (γ, X, Y ) is a Dirac-geodesic
if and only if

κg = κab sin θ, ḟ = −κab sin θ,

where X, Y are given by the formulae (3.1) and (3.2).

Proof Suppose (γ, X, Y ) is a Dirac-geodesic, by Lemma 2.2, X, Y are of the form (3.1) and
(3.2). By a direct computation, one gets that

∇γ̇ γ̇ + R(X, Y )γ̇ = ∇e1e1 + abR(cos( f )e1 + sin( f )e2, cos( f + θ)e1 + sin( f + θ)e2)e1
= 〈∇e1e1, e2

〉
e2 + ab (cos( f ) sin( f + θ) − sin( f ) cos( f + θ))) R(e1, e2)e1

= 〈∇e1e1, e2
〉
e2 − abκ sin(θ)e2

= (〈∇e1e1, e2
〉 − abκ sin θ

)
e2,

∇γ̇ X = −a sin( f ) ḟ e1 + a cos( f )∇e1e1 + a cos( f ) ḟ e2 + a sin( f )∇e1e2

= −a sin( f ) ḟ e1 + a cos( f )
〈∇e1e1, e2

〉
e2 + a cos( f ) ḟ e2

+a sin( f )
〈∇e1e2, e1

〉
e1

= −a sin( f ) ḟ e1 + a cos( f )
〈∇e1e1, e2

〉
e2 + a cos( f ) ḟ e2

−a sin( f )
〈∇e1e1, e2

〉
e1

= (−a sin( f ) ḟ − a sin( f )
〈∇e1e1, e2

〉)
e1

+ (
a cos( f ) ḟ + a cos( f )

〈∇e1e1, e2
〉)
e2

= a (− sin( f )e1 + cos( f )e2)
(
ḟ + 〈∇e1e1, e2

〉)
,

and

∇γ̇ Y = b (− sin( f + θ)e1 + cos( f + θ)e2)
(
ḟ + 〈∇e1e1, e2

〉)
.

Notice that
〈∇e1e1, e2

〉
is just the geodesic curvature κg of γ in M , and we finish the proof of

the necessity. The sufficiency is obvious. ��
3.1 Dirac-geodesics on spheres

First, we consider the unit sphere S2(1) with the standard metric and let ω be the volume
form.

Theorem 3.3 (Dirac-geodesic on the round 2-sphere) Any Dirac-geodesic (γ, X, Y ) with
non-constant γ on the round sphere S2(1) locally can be defined by

γ (s) =
(√

1 − ρ2 cos

(
λs√
1 − ρ2

)
,
√
1 − ρ2 sin

(
λs√
1 − ρ2

)
, ρ

)
,

X (s) = aλ

(
− sin

(
λs√
1 − ρ2

− cs + c0

)
, cos

(
λs√
1 − ρ2

− cs + c0

)
, 0

)
,

and

Y (s) = bλ

(
− sin

(
λs√
1 − ρ2

− cs + θ + c0

)
, cos

(
λs√
1 − ρ2

− cs + θ + c0

)
, 0

)
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where c = abλ2 sin θ and a, b, λ, θ, c0 are constants. Moreover, for p, q ∈ S2(1) and
constants c ∈ R, λ > 0, there is a Dirac-geodesic (γ, X, Y ) such that γ connects p, q with
speed λ and the oriented area of X + √−1Y is c if and only if the following condition is
satisfied:

|c| ≤ λ cot

(
dist(p, q)

2

)
. (3.3)

Proof Equip the sphere S2(1) with the standard metric, i.e., the pull-back of the metric in
R
3. In this case, the Dirac-geodesic equation becomes

⎧⎪⎨
⎪⎩

γ̈ + λ2γ = cγ × γ̇ ,

Ẋ + 〈X, γ̇ 〉 γ = 0,

Ẏ + 〈Y, γ̇ 〉 γ = 0,

where λ = ‖γ̇ ‖ is a constant. First, we claim that γ is a planar curve and a circle with radius
λ/

√
λ2 + c2 and centered at c√

λ2+c2
(γ × γ̇ + cγ ). In fact,

γ × γ̈ = cγ × (γ × γ̇ ) = c (〈γ, γ̇ 〉 γ − 〈γ, γ 〉 γ̇ ) = −cγ̇ ,

which means that γ × γ̇ + cγ is a constant since

d

ds
(γ × γ̇ + cγ ) = γ × γ̈ + cγ̇ = 0.

Moreover, the length of this vector is

‖γ × γ̇ + cγ ‖ =
√

λ2 + c2.

Suppose λ �= 0, i.e., γ is not a constant. Then
〈
γ − c

λ2 + c2
(γ × γ̇ + cγ ) , γ × γ̇ + cγ

〉
= 0.

Thus we have proved the claim.
Now by Lemma 2.2, we have that

X = a (γ̇ cos( f (s)) + γ × γ̇ sin( f (s))) ,

and

Y = b (γ̇ cos( f (s) + θ) + γ × γ̇ sin( f (s) + θ)) ,

where a, b, θ are constants such that c = abλ2 sin θ . A direct computation implies that

0 = Ẋ + 〈X, γ̇ 〉 γ = a (−γ̇ sin( f ) + γ × γ̇ cos( f )) ( ḟ + c),

and

0 = Ẏ + 〈Y, γ̇ 〉 γ = a (−γ̇ sin( f + θ) + γ × γ̇ cos( f + θ)) ( ḟ + c)

which implies that f = −cs + c0 for some constant c0.
For every constant c and two points p, q ∈ S2(1), one can check directly that there exists

a Dirac-geodesic (γ, X, Y ) with X � ∧ Y � = cωγ such that p, q ∈ γ if and only if

|c|√
λ2 + c2

≤ cos

(
dist(p, q)

2

)
,
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i.e.,

|c| ≤ λ cot

(
dist(p, q)

2

)
.

In fact, embedding S2 into R
3. Suppose γ centered at C and let Q be the midpoint of p and

q in R
3, then

|OC | ≤ |OQ| .
This means |c|√

λ2 + c2
= |ρ| ≤ cos

(
dist(p, q)

2

)
.

��
Remark 3.1 Notice that γ is just the parametrization of a circle up to orientation-preserving
isometries and X, Y are two parallel vector fields along the curve γ .

The inequality (3.3) is exactly the fact the distance between p and q is less than the
diameter of the the circle γ .

When the inequality (3.3) is strict, there exists only one shortest Dirac-geodesic (γ, X, Y )

connecting p, q with speed λ = ‖γ̇ ‖ and X � ∧ Y � = cωγ . In the case of equality. there exist
exactly two shortest Dirac-geodesic (γ, X, Y ) with speed λ and X � ∧ Y � = cωγ connecting
p, q unless c = 0. Of course, there exist infinitely many shortest geodesics connecting the
north pole and the south pole.

Hence, if dist(p, q) < π , there always exist infinitely many constants λ such that (3.3)
holds. In other words, there exists an infinite number of Dirac-geodesics (γ, X, Y ) with
X � ∧ Y � = cωγ such that γ connects p, q . However, if dist(p, q) = π , then c must be zero
and γ must be a geodesic.

Next, for topological spheres S2, Schneider (c.f. [20]), and Rosenberg-Schneider (c.f.
[19]) proved the following existence theorems for closed magnetic geodesics (solutions of
∇γ̇ γ = h(γ )Jγ (γ̇ )) on S2.

Theorem A (c.f. [19,20])

(1) Let h be a positive smooth function on S2, and c > 0 a constant. Suppose that one of the
following three assumptions is satisfied: (i) c

(
2π + (sup κ−)Vol(S2)

) ≤ 4(inf h)in jS2 ,
(ii) κ > 0 and c

√
sup κ ≤ 2(inf h), (iii) sup κ < 4 inf κ . Then there exist at least two

simple closed magnetic geodesics γ such that ‖γ̇ ‖ = c.
(2) Suppose that S2 has positive Gauss curvature. There exists a constant ε > 0 such that

for all smooth functions h : S2 −→ R satisfying 0 < h ≤ cε for some constant c, there
are two embedded distinct simple closed magnetic geodesics γ with ‖γ̇ ‖ = c.

We have the following

Theorem 3.4 Suppose the sphere S2 has positive Gauss curvature κ . Suppose one of the
following four assumptions is satisfied: (1) π ≤ 2 |c| (inf κ)in jS2 ; (2) sup

√
κ ≤ 2 |c| inf κ;

(3) sup κ < 4 inf κ; (4) |c| κ ≤ ε, where c is some constant and ε > 0 is a suitable constant.
Then there are at least two simple closed unit-speed Dirac-geodesics (γ, X, Y ) such that
X � ∧ Y � = cωγ where ω is the volume form of S2.

Proof of Theorem 3.4 It is a direct consequence of the theorem mentioned above and
Lemma 3.1. In fact, in our case, h = cκ and the speed is one. Hence, our conditions become
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(1) π ≤ 2 |c| (inf κ)in jS2 ,
(2)

√
sup κ ≤ 2 |c| inf κ,

(3) sup κ < 4 inf κ,

(4) for small ε > 0, |c| κ ≤ ε.

Hence there are at least two simple closed unit-speed curves γ satisfying

∇γ̇ γ̇ = ck(γ )Jγ (γ̇ ).

For such a γ , choose some point x ∈ γ . Choose two vectors X0, Y0 ∈ Tx S2 with

X0 ∧ Y0 = cωx

Define X, Y to be the parallel vector fields along γ with X (x) = X0, Y (x) = Y0. Then
according to our definition, (γ, X, Y ) is a Dirac-geodesic. Moreover, X � ∧ Y � = cωγ . ��
3.2 Dirac-geodesics on the hyperbolic plane

Let H2 be the standard hyperbolic plane with constant curvature −1, that is, the upper half
plane

H
2 = {

(x, y) ∈ R
2 : y > 0

}
,

with the metric

ds2 = 1

y2
(
dx2 + dy2

)
.

Next we will derive the local representation of constant geodesic curvature curves inH2. Let

ω1 = dx

y
, ω2 = dy

y
, e1 = y

∂

∂x
, e2 = y

∂

∂y
.

Then a direct computation implies that

ω12 = dx

y
.

Let γ (s) = (x(s), y(s)) be a curve in H
2 with geodesic curvature κg , then

γ̇ = ẋ
∂

∂x
+ ẏ

∂

∂y
=: ξ1e1 + ξ2e2.

In other words,

ξ1 = ẋ

y
, ξ2 = ẏ

y
.

Now according to the definition of geodesic curvature, we get⎧⎨
⎩

ξ̇1 =
(
ξ1 − κg

√
(ξ1)2 + (ξ2)2

)
ξ2,

ξ̇2 = −
(
ξ1 − κg

√
(ξ1)2 + (ξ2)2

)
ξ1.

Then (ξ1)2 + (ξ2)2 is a constant. Without loss of generality, (ξ1)2 + (ξ2)2 = 1. Then{
ξ̇1 = (

ξ1 − κg
)
ξ2,

ξ̇2 = − (
ξ1 − κg

)
ξ1.

Suppose now κg is a constant, then
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(1) If ξ1 = κg , then ξ̇2 = 0, i.e., either y = y0 > 0 with κg = ±1 or x = κg√
1−κ2g

y + C

with
∣∣κg∣∣ < 1.

(2) If ξ1 �= κg , then from
dξ1

ξ1 − κg
= ξ2ds = dy

y
,

we get that ξ1 = κg + ay (a �= 0). By the assumption (ξ1)2 + (ξ2)2 = 1, we have

(κg + ay)2 +
(
ẏ

y

)2

= 1.

Therefore

ds = dy

y
√
1 − (κg + ay)2

.

Setting κg + ay = sin t , we know that

ds = dt

sin t − κg
.

Hence

ξ2 = ẏ

y
= 1

y

dy

dt

dt

ds
= cos t.

Hence ξ1 = sin t . Then

x = −1

a
cos t + x0.

Thus,

(x − x0)
2 +

(
y + κg

a

)2 = 1

a2
.

As a consequence, we have

Theorem 3.5 In the hyperbolic plane H2, there exists a contractible closed Dirac-geodesic
(γ, X, Y ) with speed one and X � ∧ Y � = cωγ for a constant c if and only if |c| > 1.

Now suppose (M, g) is a hyperbolic surface with negative Gauss curvature κ . Let B ⊂ R
2

denote the open ball of radius 1 centered at 0 ∈ R
2. An immersion γ ∈ C1(∂B, M) will

be called oriented Alexandrov embedded, if there exists an immersion F ∈ C1(B̄, M), such
that F |∂B = γ and F is orientation preserving in the sense that for all x ∈ ∂B there holds〈

DFx (x), Jγ (x)(γ̇ (x))
〉
> 0.

Matthias Schneider proved

Theorem B (c.f. [21]) Let M be a closed oriented surface with negative Euler characteristic
χ(M) and let h be a positive function. Assume that there exists a constant h0 > 0 such that

h ≥ √
h0 and κ ≥ −h0.

Then for every positive constant c ∈ (0, 1), there exists an oriented Alexandrov embedded
closed magnetic geodesic and the number of such closed magnetic geodesics is at least
−χ(M) provided they are all non-degenerate and ‖γ̇ ‖ = c.

As a direct consequence of Lemma 3.1 and the above theorem, one can get the following
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Theorem 3.6 Let (M, g) be a closed oriented surface with negative Euler characteristic
χ(M) and negative Gauss curvature κ . For every constant c �= 0 with

h0 ≥ |κ| ≥
√
h0

|c| ,

where h0 > 0 is some constant, there exist at least −χ(M) non-degenerate and oriented
Alexandrov embedded closed unit speed Dirac-geodesics (γ, X, Y ) with X � ∧ Y � = cωγ .

Proof Suppose (γ, X, Y ) is a Dirac-geodesic with unit speed and X � ∧ Y � = cωγ . Then
(γ̃ (s) = γ (λs), X̃(s) + √−1Ỹ (s) = √

λX (λs) + √−1
√

λY (λs)) is a Dirac-geodesic with
speed λ and X̃ ∧ Ỹ = cλωγ̃ . Since

h0 ≥ |κ| ≥
√
h0

|c| ,

we have for λ ∈ (0, 1)

h0 ≥ |κ| ≥
√
h0

|c| λ .

Then Theorem B tells us that there exist at least −χ(M) non-degenerated and oriented
Alexandrov embedded closed magnetic curves with h = cκλ. The rest of the proof is similar
to Theorem 3.4. ��

4 The Dirac-geodesic heat flow on Riemannian manifolds

In this section, we will consider the Dirac-geodesic flow on Riemannian manifolds.
For γ : [0, 1]× [0, T ) −→ N and X (·, t), Y (·, t) vector fields along the curve γ (·, t), we

consider the following system
⎧⎪⎨
⎪⎩

γ ′A = γ̈ A + �A
B γ̇ B − RA

BCD(γ )γ̇ BYC XD, on (0, 1) × (0, T ),

Ẋ A + �A
B X

B = 0, on (0, 1] × [0, T ),

Ẏ A + �A
BY

B = 0, on (0, 1] × [0, T ),

(4.1)

satisfying the initial conditions

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ (s, 0) = σ(s), s ∈ (0, 1),

γ (0, t) = x0, γ (1, t) = y0, t ∈ [0, T ),

X (0, t) = X0, t ∈ [0, T ),

Y (0, t) = Y0, t ∈ [0, T ),

(4.2)

where x0 and y0 are two fixed points, and X0, Y0 are two fixed vectors. We observe

Lemma 4.1 Suppose the image of γ lies in N ′, then the Dirac-geodesic heat flow (1.3) is
equivalent to the system (4.1).

Lemma 4.2 Let (γ, X, Y ) be a solution of the system (4.1) with the initial conditions (4.2)
satisfying σ ⊂ N ′ and x0, y0 ∈ N ′, and X0 ∈ Tx0N

′, Y0 ∈ Tx0N
′. If the image of γ lies in

Ñ , then γ ⊂ N ′ and X, Y are vector fields of N ′ along the curve γ for every time 0 ≤ t < T .
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Proof Denote ρ(γ ) = π(γ ) − γ , then a direct computation implies that

1

2

(
∂

∂t
− ∂2

∂s2

)
‖ρ(γ )‖2 = 〈

ρ′ − ρ̈, ρ
〉 − ‖ρ̇‖2

=
〈
νA
B (γ )

(
−�B

C γ̇C + RB
CDE γ̇CY DXE

)
− π A

BC (γ )γ̇ B γ̇C , ρA(γ )
〉

−
∥∥∥νA

B (γ )γ̇ B
∥∥∥2 .

Notice that if γ ⊂ N ′, then〈
νA
B (γ )

(
−�B

C γ̇ C + RB
CDE γ̇ CY DXE

)
− π A

BC (γ )γ̇ B γ̇ C , ρA(γ )
〉
.

Hence by using the mean value theorem, we get that
(

∂

∂t
− ∂2

∂s2

)
‖ρ(γ )‖2 ≤ C ‖ρ(γ )‖2 .

Thus, if σ ⊂ N ′ and x0, y0 ∈ N ′, then γ must be in N ′ according to the maximum principle.
On the other hand, if γ ∈ N ′, then

d

ds

(
νA
B (γ )XB

)
= −π A

BC γ̇ C X B + νA
B Ẋ

B = −π A
BC γ̇ B XC + νA

B

(
π B
DEπD

C − π B
DπD

CE

)
γ̇ E XC

= −π A
BC γ̇ B XC + π A

DEπD
C γ̇ E XC = −π A

DπD
BC γ̇ B XC .

Moreover,

−�A
BνB

C XC =
(
π A
DEπD

B − π A
DπD

BE

)
γ̇ EνB

F X
F = −π A

DπD
FE γ̇ E X F .

Hence
d

ds

(
νA
B (γ )XB

)
+ �A

BνB
C XC = 0.

Therefore, if X0 ∈ Tx0N
′, then νA

B (γ (0))XB(0) = 0 for all A and we get that νA
B X = 0 for

all A. In other words, X is a vector field along the curve γ . Similarly, Y is a vector field of
N ′ along the curve γ . ��

Now we can give the

Proof of Theorem 1.1 First, we shall use Lemmas 4.1 and 4.2 to obtain short time existence.
��

Claim A solution of the system (4.1) with the initial conditions (4.2) is equivalent to the
following system of differential equations for a curve γ : (0, 1) × [0, T ) −→ R

q given by

γ ′A = γ̈ A + �A
B(γ )γ̇ B − RA

BCD(γ )γ̇ BYC XD

on (0, 1) × (0, T ), satisfying the initial condition{
γ (s, 0) = σ(s), s ∈ (0, 1),

γ (0, t) = x0, γ (1, t) = y0, t ∈ [0, T ),

where X and Y are smooth vector-valued function of (X0, γ, γ̇ ) and (Y0, γ, γ̇ ) determined
by {

Ẋ A + �A
B X

B = 0, on (0, 1] × [0, T ),

X (0, t) = X0, t ∈ [0, T ),
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and {
Ẏ A + �A

BY
B = 0, on (0, 1] × [0, T ),

Y (0, t) = Y0, t ∈ [0, T ),

respectively.

Claim (Short time existence) A solution of the system (1.3) with the initial condition (1.4)
exists at least on some short time interval [0, t0) for some t0 > 0 according to Lemmas 4.1
and 4.2. Moreover, the maximum time t0 is characterized by the condition

sup
t<t0

‖γ̇ (s, t)‖ = ∞.

Second, we shall derive a differential equation for the energy density. As a consequence,
the energy density grows at most exponentially, implying the long time existence.

Claim (long time existence) Define the energy density e(γ ) of γ by

e(γ ) = 1

2
‖γ̇ ‖2 ,

then (
∂

∂t
− ∂2

∂s2

)
e(γ ) ≤

∥∥X � ∧ Y �
∥∥2 sup ‖R‖2
2

e(γ ).

Thus, a solution of (1.3) and (1.4) exists for all time.

Proof
(

∂

∂t
− ∂2

∂s2

)
e(γ ) = 〈∇γ ′ γ̇ − ∇γ̇ ∇γ̇ γ̇ , γ̇

〉 − ∥∥∇γ̇ γ̇
∥∥2 = 〈∇γ̇

(
γ ′ − ∇γ̇ γ̇

)
, γ̇

〉 − ∥∥∇γ̇ γ̇
∥∥2

= 〈
R(X, Y )γ̇ ,∇γ̇ γ̇

〉 − ∥∥∇γ̇ γ̇
∥∥2 ≤

∥∥X � ∧ Y �
∥∥2 sup ‖R‖2
2

e(γ ).

Notice that at the boundary ∂[0, 1] × [0, T ),

∂e(γ )

∂s
= 〈∇γ̇ γ̇ , γ̇

〉 = 〈
γ ′ − R(X, Y )γ̇ , γ̇

〉 = 〈
γ ′, γ̇

〉 = 0.

Hence,

e(γ ) ≤ exp

(∥∥X � ∧ Y �
∥∥2 sup ‖R‖2
2

t

)
sup e(σ ).

��
Finally, the uniqueness of this flow is obvious.

To prove Theorem 1.2, we need some preliminary lemmas.

Lemma 4.3 Let Nn be a Riemannian manifold, (γ, X, Y ) be a global solution of (1.3) and
(1.4). Then the energy of γ is a decreasing function of t , precisely,

dE(γ )

dt
= −

∫ 1

0

∥∥γ ′∥∥2 .
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Proof Notice that
∫ 1

0

〈
γ ′, R(X, Y )γ̇

〉 =
∫ 1

0

〈
R(γ ′, γ̇ )X, Y

〉 =
∫ 1

0

〈∇γ ′∇γ̇ X − ∇γ̇ ∇γ ′ X, Y
〉

= −
∫ 1

0

〈∇γ̇ ∇γ ′ X, Y
〉 = − 〈∇γ ′ X, Y

〉 |10 +
∫ 1

0

〈∇γ ′ X,∇γ̇ Y
〉 = 0.

As a consequence,

dE(γ )

dt
=

∫ 1

0

〈∇γ ′ γ̇ , γ̇
〉 =

∫ 1

0

〈∇γ̇ γ ′, γ̇
〉 = −

∫ 1

0

〈
γ ′,∇γ̇ γ̇

〉 + 〈
γ ′, γ̇

〉 |10
= −

∫ 1

0

∥∥γ ′∥∥2 +
∫ 1

0

〈
γ ′, R(X, Y )γ̇

〉 = −
∫ 1

0

∥∥γ ′∥∥2 .

��
Based on this lemma, we know that γ is contained in some bounded subset of N . To see

this, for every s, s′ ∈ (0, 1), we have

dist(γ (s, t), γ (s′, t)) ≤
∣∣∣∣∣
∫ s′

s
‖γ̇ ‖

∣∣∣∣∣ ≤ ∣∣s − s′∣∣1/2
(∫ s′

s
‖γ̇ ‖2

)1/2

≤ ∣∣s − s′∣∣1/2 (2E(γ ))1/2

≤ ∣∣s − s′∣∣1/2 (2E(σ ))1/2 .

Hence, there exists a sequence γ (·, ti ) such that γ (·, ti ) absolutely converges to a C1/2 curve
in Cα for 0 < α < 1/2 as ti → ∞.

The kinetic energy density of γ is defined by

k(γ ) = 1

2

∥∥γ ′∥∥2 .

Remark 4.1 If N is a surface, then there must be a constant c such that

R(X, Y )γ̇ = R(X ∧ Y )γ̇ = −cκN Jγ (γ̇ ).

To see this, first we have X ∧ Y = c(t)ωN (γ ) since X and Y are parallel vector fields along
the curve γ . Second, at the fixed point x0, we know that c(t) does not change the value since
X0 and Y0 are given.

Now we claim the following inequality

Lemma 4.4 Assume that N is a Riemann surface with negative Gauss curvature κ , then for
any ε ∈ (0, 1),

(
∂

∂t
− ∂2

∂s2

)
k(γ ) ≤

(
2c2

∥∥∥∇N√−κ

∥∥∥2 + c2κ2

2ε

)
k(γ ) − 2(1 − ε)

∥∥∥∇√
k(γ )

∥∥∥2 .

Proof
(

∂

∂t
− ∂2

∂s2

)
k(γ ) = 〈∇γ ′γ ′ − ∇γ̇ ∇γ̇ γ ′, γ ′〉 − ∥∥γ̇ ′∥∥2

= 〈∇γ ′
(
γ ′ − ∇γ̇ γ̇

)
, γ ′〉 − ∥∥γ̇ ′∥∥2 + R(γ̇ , γ ′, γ̇ , γ ′)
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= 〈∇γ ′ (R(X ∧ Y )γ̇ ) , γ ′〉 − ∥∥γ̇ ′∥∥2 + κN (γ )
∥∥γ̇ ∧ γ ′∥∥2

= 〈
(∇γ ′ R)(X ∧ Y )γ̇ + R(X ∧ Y )γ̇ ′, γ ′〉 − ∥∥γ̇ ′∥∥2 + κN (γ )

∥∥γ̇ ∧ γ ′∥∥2 .

Suppose now κN < 0, then
(

∂

∂t
− ∂2

∂s2

)
k(γ ) ≤ 2 |c|

∥∥∥∇N√−κ

∥∥∥ ∥∥γ ′∥∥ √−κ
∥∥γ̇ ∧ γ ′∥∥ − |c| κ ∥∥γ̇ ′∥∥ ∥∥γ ′∥∥

− ∥∥γ̇ ′∥∥2 + κ
∥∥γ̇ ∧ γ ′∥∥2

≤
(
2c2

∥∥∥∇N√−κ

∥∥∥2 + c2κ2

2ε

)
k(γ ) − (1 − ε)

∥∥γ̇ ′∥∥2 .

Noting that
‖∇k(γ )‖2 = 〈

γ̇ ′, γ ′〉2 ≤ 2
∥∥γ̇ ′∥∥2 k(γ ),

namely, ∥∥∥∇√
k(γ )

∥∥∥2 ≤ 1

2

∥∥γ̇ ′∥∥2 ,

and substituting this into the above inequality, we get the desired conclusion. ��
We recall the Poincaré’s inequality

π2
∫ 1

0
‖ f ‖2 ≤

∫ 1

0

∥∥ ḟ
∥∥2

for smooth functions f with f (0) = f (1) = 0. Now we can give the

Proof of Theorem 1.2 Denote

C = 2c2
∥∥∥∇N√−κ

∥∥∥2 + c2κ2

2ε
,

then we have

0 ≥ d

dt

∫ 1

0
e−Ct k(γ )ds + 2(1 − ε)

∫ 1

0

∥∥∥∥∇
√
e−Ct/2k(γ )

∥∥∥∥
2

ds

≥ d

dt

∫ 1

0
e−Ct k(γ )ds + 2(1 − ε)π2

∫ 1

0
e−Ct k(γ )ds.

Hence,
d

dt

(
e(2(1−ε)π2−C)t

∫ 1

0
k(γ )ds

)
≤ 0.

Therefore, if

2c2
∥∥∥∇N√−κ

∥∥∥2 + c2κ2

2ε
< 2(1 − ε)π2

for some ε ∈ (0, 1), then the kinetic energy of γ decays exponentially. Obviously, |cκ| < 2π ,
hence we can choose

ε = |cκ|
2π

∈ (0, 1).

That is, if we make the assumption

c2
∥∥∥∇N√−κ

∥∥∥2 + π |cκ| < π2,

123



2634 Q. Chen

or equivalently the assumption (1.5), then
∫ 1

0
k(γ )ds ≤ e

(
2c2

∥∥∇N√−κ
∥∥2+2π |cκ|−2π2

)
t
∫ 1

0
k(σ )ds. (4.3)

Let h(x, y, t) be the Dirichlet heat kernel of [0, 1]. Applying the differential inequality of
k(γ ) (

∂

∂t
− ∂2

∂s2

)
k(γ ) ≤

(
2c2

∥∥∥∇N√−κ

∥∥∥2 + π |cκ|
)
k(γ )

we get that (
∂

∂t
− ∂2

∂s2

) (
e
−

(
2c2

∥∥∇N√−κ
∥∥2+π |cκ|

)
t
k(γ )

)
≤ 0.

For every τ > 1, denote F(s, t) = e
−

(
2c2

∥∥∇N√−κ
∥∥2+π |cκ|

)
t
k(γ (s, t + τ − 1)), then

F(s, 1) ≤
∫ 1

0
h(s, x, 1)F(x, 0) dx

≤
∫ 1

0
h(s, x, 1)k(γ (x, τ − 1)) dx

≤ C
∫ 1

0
k(γ (x, τ − 1)) dx . (4.4)

With Lemma 4.3, and (4.3) and (4.4), we have

k(γ (s, τ − 1)) ≤ Ce2π
2−2π |cκ|e

(
2c2

∥∥∇N√−κ
∥∥2+2π |cκ|−2π2

)
τ
∫ 1

0
k(σ )ds

≤ Ce

(
2c2

∥∥∇N√−κ
∥∥2+2π |cκ|−2π2

)
τ
∫ 1

0
k(σ )ds.

��
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