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In this paper, we derive gradient estimates for Dirac-harmonic maps from complete
Riemannian spin manifolds into regular balls in Riemannian manifolds. With these esti-
mates, we can prove Liouville theorems for Dirac-harmonic maps under curvature or en-
ergy conditions.
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1. Introduction

Dirac-harmonic maps have been introduced in [1,2]. They couple a harmonic map type field with a spinor field [3].
This model originated in the supersymmetric � -model of quantum field theory, the only difference being that in the
supersymmetric � -model the (anticommuting) spinor fields take values in a Grassmannian algebra, making the model
supersymmetric, while in Dirac-harmonic maps, the spinors are commuting as in spin geometry, keeping the model within
the category of the geometric calculus of variations.

Let us recall the terminology and setting for Dirac-harmonic maps. Let (Mm, g) be a Riemannian spin manifold of
dimension m � 2 with a fixed spin structure, and ⌃M the spinor bundle over M , on which we chose a Hermitian metric
h·, ·i. The Levi-Civita connection r on ⌃M is compatible with h·, ·i. Let (Nn, h) be a Riemannian manifold of dimension
n,� a map from M to N , and ��1

TN the pull-back bundle of TN by � . On the twisted bundle ⌃M ⌦ ��1
TN there is a

metric (still denoted by h·, ·i) induced from the metrics on ⌃M and ��1
TN . There is also a connection, still denoted by r ,

on⌃M ⌦ ��1
TN naturally induced from those on⌃M and��1

TN .
Locally, we canwrite a cross-section of⌃M⌦��1

TN as =  ↵⌦✓↵ , where { ↵} are local cross-sections of⌃M, {✓↵}
are local cross-sections of��1

TN . Here and in the sequel, we use the usual summation convention.
The Dirac operator along the map� is defined as

6D := e

i

· r
e

i

 

= 6@ ↵ ⌦ ✓↵ +  ↵ ⌦ r
e

i

✓↵,

⇤ Corresponding author at: School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.
E-mail addresses: qunchen@whu.edu.cn (Q. Chen), jost@mis.mpg.de (J. Jost), sunll101@whu.edu.cn (L. Sun).

0393-0440/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.geomphys.2013.10.011

http://dx.doi.org/10.1016/j.geomphys.2013.10.011
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2013.10.011&domain=pdf
mailto:qunchen@whu.edu.cn
mailto:jost@mis.mpg.de
mailto:sunll101@whu.edu.cn
http://dx.doi.org/10.1016/j.geomphys.2013.10.011


Q. Chen et al. / Journal of Geometry and Physics 76 (2014) 66–78 67

where {e
i

} is a local orthonormal basis on M, 6@ := e

i

· r
e

i

is the usual Dirac operator on M and ‘‘X ·’’ stands for the Clifford
multiplication by the vector field X onM .

Consider the functional

L(�, ) = 1
2

Z

M

�kd�k2 + h , 6D i
�
.

The critical points (�, ) satisfy the Euler–Lagrange equations for L(�, ) are (cf. [1])
8
<

:
⌧ (�) = 1

2
h ↵, e

i

·  �iRN(✓↵, ✓�)�⇤(ei),

6D = 0,
(1.1)

where R

N(X, Y ) := [rN

X

, rN

Y

] � rN

[X,Y ], 8X, Y 2 � (TN) stands for the curvature operator of N , and ⌧ (�) := (rT

⇤
M⌦��1

TN

e

i

d�)(e
i

) is the tension field of� . Therefore, solutions of (1.1) are called Dirac-harmonic maps from M to N .
Dirac-harmonic maps have been investigated under various aspects, see the recent article [4] and the references therein.

In [4], a maximum principle of Jäger–Kaul type [5] was established for Dirac-harmonic maps from compact Riemannian
spin manifolds with mean convex boundaries and positive scalar curvatures into certain geodesic balls of the target
manifolds, based on which a general existence and uniqueness theorem for boundary value problems was proved through
the continuity method. Most recently, the space of Dirac-harmonic maps was analyzed by B. Ammann and N. Ginoux in [6]
by using tools from index theory, and the existence of uncoupled solutions (i.e.,� is a harmonic map) was proved.

Most of the previous works deal with Dirac-harmonic maps from compact manifolds. It is the main aim of the present
paper to derive properties of Dirac-harmonic maps on complete noncompact manifoldsM .

In the classical works of S.T. Yau [7] and others on harmonic functions on noncompact manifolds, the gradient estimate
method plays a key role. On one hand, these estimates may directly give rise to Liouville type results; on the other hand,
theymay also lead to fundamental analytic properties such as Harnack inequalities, and furthermore, they are very useful for
establishing existence results. This method has been extended to the case of harmonic maps. In [8], S.Y. Cheng established
gradient estimates andderived the Liouville theorem for harmonicmaps fromanoncompactmanifoldM into a nonpositively
curvedmanifoldN . In [9] H.I. Choi proved a similar result for harmonicmaps into a regular ball, namely, a geodesic ball B

y0(R)

with radius R that lies within the cut locus of its center y0 2 N and satisfies R < ⇡/2
p
K

N

, where the sectional curvature
of N is bounded above by K

N

> 0. The gradient estimates turn out to be a powerful tool for proving existence results of
harmonic maps and their heat flows on noncompact manifolds. For example, in [10], J.Y. Li used it to improve the result of
P. Li and L.F. Tam [11] with a different method.

In this paper, wewill first derive a gradient estimate for Dirac-harmonicmaps from complete Riemannian spinmanifolds
into regular balls in the target manifolds, which generalizes the result for harmonic maps in [9]. As an application, we then
prove a Liouville theorem for Dirac-harmonic maps under curvature conditions. We also obtain Liouville theorems under
energy conditions.

When the target has nonpositive curvature, the size of the target ball is arbitrary (topological issues can be avoided by
lifting to universal covers). In the presence of positive target curvature, however, we know since [12] that a restriction on
the radius of the target ball is needed in order to obtain estimates. The optimal size of such a ball corresponds to an open
hemisphere in the case of the standard sphere, as shown in [12]. Remarkably, we can achieve the same optimal condition
on the radius R < ⇡/2

p
K

N

as in [9] for Dirac-harmonic maps as in the original work for harmonic maps.
We can now state our gradient estimate.

Theorem 1 (Gradient Estimate). Suppose the Ricci curvature of M satisfies Ric
M

� � for some nonnegative constant  , the
sectional curvature sec

N

and the curvature tensor R

N

of N satisfy �b2  sec
N

 b1 and
��rR

N

��  b3 respectively, where b

i

are

constants with b2 � b1 > 0, b3 � 0. Denote

b = b

3
2 + b

4
2 + b

2
3.

If (�, ) is Dirac-harmonic and� : Mm �! B

y0(R) ⇢ N

n, R < ⇡/(2
p
b1), then, for any x0 2 M and any positive constant a,

we have

sup
B

x0 (a/2)
kd�k  C(m, n)p

b1 cos2(
p
b1R)

 
1 + p

a

a

+
s

b

b1
sup
B

x0 (a)

k k2

!

, (1.2)

where C(m, n) > 0 is a constant depending only on the dimensions m and n.

Remark 1. Under the hypothesis of Theorem 1, if � is a harmonic map and we choose  ⌘ 0, then in fact we can obtain
the following global estimate for d�:

sup
M

kd�k 
p
min {

m, n} p
b1 cos(

p
b1R)

.
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As the upper bound in our estimate is given by an explicit expression in terms of the geometric quantities involved such
as the bounds on the curvatures ofM and N or the radius of the regular ball, it becomes clear that and how these geometric
quantities control the behavior of the map.

We can then apply this gradient estimate to obtain a Liouville type theorem for Dirac-harmonic maps.

Theorem 2 (Liouville Theorem). Assume that M is completewith nonnegative Ricci curvature and the scalar curvature is bounded

below by a positive constant ✏, suppose the sectional curvature sec
N

and curvature tensor R

N

of N satisfy �b2  sec
N

 b1 and��rR

N

��  b3 respectively, where b

i

are constants with b2 � b1 > 0, b3 � 0. Then there is a constant � > 0 such that for any

Dirac-harmonic (�, ) satisfying �(M) ⇢ B

y0(R) ⇢ N, R < ⇡/(2
p
b1) and k k < �, we have� ⌘ constant and  ⌘ 0.

Remark 2. (1) The constant � can be chosen as

� = C(m, n)(b31✏)
1/4 cos(

p
b1R)p

b

,

for some suitable constant C(m, n) > 0, where b = b

3
2 + b

4
2 + b

2
3.

(2) The condition on the positive lower bound for the scalar curvature of M cannot be removed. For instance, there are
Dirac-harmonic maps (�0, ) : Rm ! N , with �0 constant maps and the components of  nontrivial harmonic
spinors, namely, 6@ ↵ ⌘ 0,↵ = 1, . . . , n.

When the domain manifold M is compact, H.C. Sealey studied harmonic maps with small energy in [13], and derived
some Liouville theorems for such harmonic maps. For Dirac-harmonic maps, we also have the following Liouville theorem
which includes the result of Sealey by letting  ⌘ 0.

Theorem 3 (Liouville Theorem). Let M be a compact spin manifold. Suppose Ric
M

� a for some positive constant a, and �b2 
sec

N

 b1 for some positive constants b1, b2 such that b2 � b1. Let (�, ) be a Dirac-harmonic map such that max rank�  q.

If for some � > 0,

q � 1
q

b1 kd�k2 + m � 1 + �

4(m + �)
(n � 1)2 qb22 k k4  a, (1.3)

and the equality is not valid at least at one point, then� must be constant and  ⌘ 0.
In particular, if

b1 kd�k2 + min {
m, n}
4

(n � 1)2 b22 k k4  a, (1.4)

then� must be constant and  ⌘ 0.

For complete noncompact manifolds M , we can prove the following Liouville theorem for Dirac-harmonic maps under
an energy hypothesis, which extends a result of R. Schoen and S.T. Yau in [14].

Theorem 4 (Liouville Theorem). Let M be a complete noncompact spin manifold. Suppose the Ricci curvature of M is bounded

below by a nonnegative function a, the sectional curvature of N is bounded above by a nonnegative function b1 and bounded

below by a nonpositive function �b2, b2 � b1. Let (�, ) be a Dirac-harmonic map such that max rank�  q. If for some

constant � 2 (0, 1),

q � 1
q

b1 kd�k2 + 1 + �

4�
(n � 1)2 qb22 k k4  a, (1.5)

and

Z

M

kd�k2 + k k4 < 1, (1.6)

then� must be constant and  ⌘ 0.

The paper is organized as follows: in Section 2, we establish basic estimates for Dirac-harmonic maps including
Kato–Yau inequalities and give the proof of Theorem 1. In Section 3 we prove Liouville theorems for Dirac-harmonic maps,
Theorems 2–4.

2. Gradient estimates for Dirac-harmonic maps

2.1. Preliminaries

We first recall the following Weitzenböck formula [15].
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Proposition 1. For a smooth map� : M ! N,

1
2
� kd�k2 � div(h⌧ (�),�⇤(ei)iei) = krd�k2 � k⌧ (�)k2 + h�⇤(RicM(e

i

)),�⇤(ei)i

� R

N(�⇤(ei),�⇤(ej),�⇤(ei),�⇤(ej)), (2.1)

where

{
e

i

}
is a local orthonormal frame on M. ⇤

It follows from (2.1) that

1
2
� kd�k2 = krd�k2 + hr

e

i

⌧ (�),�⇤(ei)i + h�⇤(RicM(e
i

)),�⇤(ei)i � R

N(�⇤(ei),�⇤(ej),�⇤(ei),�⇤(ej)). (2.2)

By direct computations, one has the following.

Lemma 1. If (�, ) is Dirac-harmonic, then

hr
e

i

⌧ (�),�⇤(ei)i = �1
2
h , e

i

·  ↵ ⌦ (r�⇤(e
j

)R
N)(�⇤(ei),�⇤(ej))✓↵i

+ 1
2
h , e

j

·  ↵ ⌦ R

N(�⇤(ei), (re

i

d�)(e
j

))✓↵i

� hr
e

j

 , e
i

·  ↵ ⌦ R

N(�⇤(ei),�⇤(ej))✓↵i. ⇤ (2.3)

It is then easy to derive the following estimates:

k⌧ (�)k  1
2

(n � 1)
p
min {

m, n}
��
R

N

�� k k2 kd�k , (2.4)

and
��hr

e

i

⌧ (�),�⇤(ei)i
��  1

2
(n � 1) (min {

m, n} � 1)
��rR

N

�� k k2 kd�k3

+ 1
2

(n � 1)
p
min {

m, n}
��
R

N

�� k k2 kd�k krd�k

+ (min {
m, n} � 1)

p
n

��
R

N

�� k k kr k kd�k2 . (2.5)

In fact, firstly choose {
e

i

} such that h�⇤(ei),�⇤(ej)i = �2
i

�
ij

where �1 � �2 � · · · � �
q

> 0 = �
q+1 = · · · = �

m

.
Secondly, choose ✓↵ be a local orthonormal frame on N along the map � , such that �⇤(ei) = �

i

✓
i

for i = 1, 2, . . . , q, then
k k2 = P

↵ k ↵k2. By the definition of Dirac-harmonic map (1.1), one can get that

k⌧ (�)k = 1
2

�����
X

i,↵,�

h ↵, e
i

·  �iRN(✓↵, ✓�)�⇤(ei)

�����

 1
2

�����
X

0<iq,↵ 6=�
k ↵k

�� �
�� ��

R

N

�� �
i

�����

 1
2
q(n � 1)

��
R

N

�� kd�k
X

↵

k ↵k2

 1
2

(n � 1)
p
min {

m, n}
��
R

N

�� k k2 kd�k .

Similarly, one can get estimate (2.5).
In order to estimate krd�k2 and kr k2, we need to establish some Kato–Yau inequalities. We first recall that for any

Riemannian vector bundle E and any cross-section  of E,

kr k � kr k k k , (2.6)

provided that  6= 0. We can prove the following Kato–Yau inequalities for Dirac-harmonic maps which generalize both
the result for harmonic maps in [14] and the result for harmonic spinors in [16].

Proposition 2 (Kato–Yau Inequalities). Let E be any Dirac bundle on M with dimension m. Then for any cross-section 2 � (E)
and � > 0, we have

kr k2 �
✓
1 + 1

m � 1 + �

◆
kr k k k2 � 1

�
k6D k2 , (2.7)
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provided that  6= 0. More generally, for any ✏ � 1/m, we have

kr k2 � 1 � ✏

m � 1
k6D k2 +

✓
1 + 1 � 1/✏

m � 1

◆
kr k k k2 , (2.8)

provided  6= 0.
In particular, when (�, ) is a Dirac-harmonic map, we have

krd�k2 �
✓
1 + 1

m � 1 + �

◆
kr kd�k k2 � 1

4�
(n � 1)2 min {

m, n}
��
R

N

��2 k k4 kd�k2 , (2.9)

and

kr k2 �
✓
1 + 1

m � 1

◆
kr k k k2 , (2.10)

provided d� 6= 0 and  6= 0.

Proof. If r k k = 0, (2.7) is obvious and (2.8) holds since

kr k2 � 1
m

k6D k2 ,

and ✏ � 1/m. Now suppose that 6= 0 andr k k 6= 0 at the considered point. Then we can choose an orthonormal frame
{
e

i

} such that at the considered point

e1 = kr k k k�1 r k k
and

kr k k k = r
e1 k k 

��r
e1 

�� .

Note that the Cauchy–Schwarz inequality implies that for it follows from every positive number ✏, the flowing inequality

2ab  ✏a2 + 1
✏
b

2

holds for all real numbers a, b. Hence, for any ✏ � 1/m > 0, at the considered point, applying this Cauchy–Schwarz
inequality and the well-known triangle inequality, one gets that

kr k2 = 1
m

k6D k2 +
X

j

����re

j

 + 1
m

e

j

· 6D 
����
2

= 1
m

k6D k2 +
����e1 · r

e1 � 1
m

6D 
����
2

+
X

j>1

����ej · r
e

j

 � 1
m

6D 
����
2

� 1
m

k6D k2 +
����e1 · r

e1 � 1
m

6D 
����
2

+ 1
m � 1

�����
X

j>1

����ej · r
e

j

 � 1
m

6D 
����

�����

2

� 1
m

k6D k2 +
����e1 · r

e1 � 1
m

6D 
����
2

+ 1
m � 1

�����
X

j>1

✓
e

j

· r
e

j

 � 1
m

6D 
◆�����

2

= 1
m

k6D k2 +
����e1 · r

e1 � 1
m

6D 
����
2

+ 1
m � 1

����
1
m

6D � e1 · r
e1 

����
2

= 1
m

k6D k2 + m

m � 1

����e1 · r
e1 � 1

m

6D 
����
2

= 1
m � 1

k6D k2 + m

m � 1

��r
e1 

��2 � 2
m � 1

<h6D , e1 · r
e1 i

� 1 � ✏

m � 1
k6D k2 +

✓
1 + 1 � 1/✏

m � 1

◆��r
e1 

��2

� 1 � ✏

m � 1
k6D k2 +

✓
1 + 1 � 1/✏

m � 1

◆
kr k k k2 ,
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where the first inequality follows by the mean value inequality. Choose ✏ > 1 � 1/m such that

� = m � 1
✏ � 1

,

then

kr k2 �
✓
1 + 1

m � 1 + �

◆
kr k k k2 � 1

�
k6D k2 .

Now we consider d� as a cross-section of the Dirac bundle
V⇤

T

⇤
M ⌦ ��1

TN . The Clifford multiplication is defined by

X · (⌘↵ ⌦ E↵) = X

] ^ ⌘↵ ⌦ E↵ � ◆
X

⌘↵ ⌦ E↵,

and the associated Dirac operator 6D is defined by 6D = D + D

⇤, where D = ⌘i ^ r
e

i

and D

⇤ is the dual of D. In particular,
6Dd� = D

⇤d� = �⌧ (�). Thus, when (�, ) is a Dirac-harmonic map, it follows from (2.4) and (2.7) that

krd�k2 �
✓
1 + 1

m � 1 + �

◆
kr kd�k k2 � 1

�
k⌧ (�)k2

�
✓
1 + 1

m � 1 + �

◆
kr kd�k k2 � 1

4�
(n � 1)2 min {

m, n}
��
R

N

��2 k k4 kd�k2 (2.11)

provided d� 6= 0 and  6= 0. (2.10) follows from (2.7) by using the Dirac-harmonicity and letting � ! 0. ⇤

Remark 3. One can prove (2.9) directly. Indeed, let d� = �↵
i

⌘i ⌦ ✓↵ where
�
⌘i
 
is the dual of {e

i

}, and choose e1 as in the
proof of Proposition 2, then for any ✏ > 0,

krd�k2 =
X

↵,i,j

(�↵
ij

)2 �
X

↵

(�↵11)
2 + 2

X

↵,j>1

(�↵1j)
2 +

X

↵,j>1

(�↵
jj

)2

�
X

↵

(�↵11)
2 + 2

X

↵,j>1

(�↵1j)
2 + 1

m � 1

X

↵

 
X

j>1

�↵
jj

!2

=
X

↵

(�↵11)
2 + 2

X

↵,j>1

(�↵1j)
2 + 1

m � 1

X

↵

�
⌧ (�)↵ � �↵11

�2

� m

m � 1

X

↵,j

(�↵1j)
2 + 1

m � 1
k⌧ (�)k2 � 2

m � 1
�↵11⌧ (�)↵

� 1 � ✏

m � 1
k⌧ (�)k2 +

✓
1 + 1 � 1/✏

m � 1

◆X

↵,j

(�↵1j)
2.

Choosing ✏ > 1 such that � = (m � 1)/(✏ � 1) > 0 and noting that
P

↵,j(�
↵
1j)

2 � kr kd�k k2, we deduce that

krd�k2 �
✓
1 + 1

m � 1 + �

◆
kr kd�k k2 � 1

�
k⌧ (�)k2 ;

consequently, (2.9) follows.

2.2. Gradient estimates

Now we consider the gradient estimates for Dirac-harmonic maps. By using (2.2) and (2.5), one gets that
1
2
� kd�k2 � krd�k2 � b3C(m, n) k k2 kd�k3 � b2C(m, n) k k2 kd�k krd�k

� b2C(m, n) k k kr k kd�k2 �  kd�k2 � b1

✓
1 � 1

p

◆
kd�k4

for some constant C(m, n) > 0 depending only onm and n. Applying the Cauchy–Schwarz inequality, one gets that, for any
�1 > 0,

1
2
� kd�k2 � (1 � �1) krd�k2 � b

2
2

�1
C(m, n) k k4 kd�k2

� b

2
3

b1
C(m, n)2p(p + 1) k k4 kd�k2 � b1

2p(p + 1)
kd�k4
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� b

2
2

b1
C(m, n)2p(p + 1) k k2 kr k2 � b1

2p(p + 1)
kd�k4 �  kd�k2 � b1

✓
1 � 1

p

◆
kd�k4

� (1 � �1) krd�k2 �
✓
b

2
2

�1
+ b

2
3

b1

◆
C(m, n) k k4 kd�k2

� b

2
2

b1
C(m, n) k k2 kr k2 �  kd�k2 �

✓
1 � 1

p + 1

◆
b1 kd�k4 ,

for some C(m, n) > 0. Let � = 1 and choose �1 such that

(1 � �1)

✓
1 + 1

m � 1 + �

◆
= 1 + 1

m � 1 + 2�
,

i.e.,

�1 = 1
(m + 1)2

,

then according to the Kato–Yau inequality for the map (2.9) when � = 1, one gets that

1
2
� kd�k2 �

✓
1 + 1

m + 1

◆
kr kd�k k2 � m

2 + 2m
4(m + 1)2

(n � 1)2 min {
m, n} b22 k k4 kd�k2

�
✓
b

2
2 + b

2
3

b1

◆
C(m, n) k k4 kd�k2

� b

2
2

b1
C(m, n) k k2 kr k2 �  kd�k2 �

✓
1 � 1

p + 1

◆
b1 kd�k4

�
✓
1 + 1

m + 1

◆
kr kd�k k2 �

✓
b

2
2 + b

2
3

b1

◆
C(m, n) k k4 kd�k2

� b

2
2

b1
C(m, n) k k2 kr k2 �  kd�k2 �

✓
1 � 1

p + 1

◆
b1 kd�k4 . (2.12)

Since (�, ) is Dirac-harmonic, by the Weitzenböck formula (3.10) in [2] and the Kato–Yau inequality (2.10), we have

1
2
� k k4 = k k2� k k2 +

��r k k2
��2

� 2 k k2 kr k2 +
��r k k2

��2 + S

M

2
k k4 � (p � 1)(n � 1)b22 k k4 kd�k2

� k k2 kr k2 +
✓
1 + 1

m + 1

◆��r k k2
��2 � m

2
 k k4 � b

2
2C(m, n) k k4 kd�k2 . (2.13)

Now we fix the constant

C0 := C(m, n)

in the above two inequalities (2.12) and (2.13), and set

ẽ :=
p
C0b2p
b1

k k2 , C1 :=
p
C0b2p
b1

, e :=
q

kd�k2 + ẽ =
q

kd�k2 + C

2
1 k k4.

We have the following.

Lemma 2. Suppose Ric
M

� �, �b2  sec
N

 b1 and

��rR

N

��  b3, where b2 � b1 > 0. Denote

b0 := b

3
2 + b

4
2 + b

2
3

b1
and

p = min {
m, n} � max rank d� . Then we have the following inequality

1e � 1
m + 1

kre

k2

e

� m

2
e � C(m, n)b0 k k4

e �
✓
1 � 1

p + 1

◆
b1 kd�k2

e, (2.14)

where C(m, n) > 0 is a constant depending only on m and n.



Q. Chen et al. / Journal of Geometry and Physics 76 (2014) 66–78 73

Proof. Denote µ := 1
m+1 , then by (2.12) and (2.13), we have

1
2
1e

2 � (1 + µ)
⇣
kr kd�k k2 +

��r ẽ

��2
⌘

� m

2
e2 �

✓
b

2
2 + b

4
2 + b

2
3

b1

◆
C(m, n) k k4 kd�k2

�
✓
1 � 1

p + 1

◆
b1 kd�k4 .

Independently,

kre

k2 =
��re

2
��2

4e2
= e

�2 �kd�k r kd�k + ẽr ẽ

�2

 e

�2
⇣
kd�k2 kr kd�k k2 + ẽ

2
��r ẽ

��2 + 2 kd�k kr kd�k k
ẽ

��r ẽ

��
⌘

 e

�2
⇣
kd�k2 kr kd�k k2 + ẽ

2
��r ẽ

��2 + kd�k2
��r ẽ

��2 + kr kd�k k2
ẽ

2
⌘

= kr kd�k k2 +
��r ẽ

��2
.

Therefore,

1e � µ
kre

k2

e

� m

2
e � C(m, n)b0 k k4

e �
✓
1 � 1

p + 1

◆
b1 kd�k2

e. ⇤

Denote by B : N �! R+ a function which will be defined later, and denote f = e/(B � �). For any point x0 2 M , we
define a function on B

a

(x0) by

F =
�
a

2 � r

2�
f =

�
a

2 � r

2� e

B � � , (2.15)

where r(x) = dist(x0, x). It is easy to see that if e 6= 0, then F must achieve its maximum at some interior point x⇤. We may
assume that r is twice differentiable near x⇤ (cf. [17]). By the maximum principle, we have

rF(x⇤) = 0, (2.16)
1F(x⇤)  0. (2.17)

We recall the Laplace Comparison Theorem [18], for some constant C(m) > 0 depending only onm,

1r

2  C(m)(1 + p
r), (2.18)

where the constant C(m) can be chosen as 2m.

Lemma 3. Set

A = m

2
 + C(m)(1 + p

r)

a

2 � r

2 + 8r2
�
a

2 � r

2
�2 ,

then at the point x

⇤
, we have the following estimate

1
m + 1

kr(B � �)k2

(B � �)2
� �(B � �)

B � � � 4r
kr(B � �)k

(a2 � r

2)B � �

�
✓
1 � 1

p + 1

◆
b1 kd�k2 � A � C(m, n)b0 k k4  0. (2.19)

Proof. We first have

rf = re

B � � � er(B � �)

(B � �)2
,

and

1f = 1e

B � � � f�(B � �)

B � � � 2hr(B � �), rf i
B � � .

By using (2.14) and setting µ = 1/(m + 1), we get

1f � µ
kre

k2

eB � � � m

2
 f � C(m, n)b k k4

f �
✓
1 � 1

p + 1

◆
b1 kd�k2

f � f�(B � �)

B � � � 2hr(B � �), rf i
B � � . (2.20)
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We also have that

�2hr(B � �), rf i
B � � = �(2 � 2µ)

hr(B � �), rf i
B � � � 2µ

hr(B � �), rf i
B � �

= �(2 � 2µ)
hr(B � �), rf i

B � � � 2µ
hr(B � �), rei

(B � �)2
+ 2µ

f

kr(B � �)k2

(B � �)2

� �(2 � 2µ)
hr(B � �), rf i

B � � � µ
kre

k2

eB � � + µ
f

kr(B � �)k2

(B � �)2
.

Therefore,

1f

f

� �(2 � 2µ)
hr(B � �), rf i

fB � � + µ
kr(B � �)k2

(B � �)2
� �(B � �)

B � �

� m

2
 � C(m, n)b0 k k4 �

✓
1 � 1

p + 1

◆
b1 kd�k2 .

At the point x⇤, since F achieves its maximum, as a consequence rF(x⇤) = 0 and1F(x⇤)  0. By the definition of F , one
has that

rr

2

a

2 � r

2 = rf

f

,

and

� 1r

2

a

2 � r

2 + 1f

f

� 2hrr

2, rf i
f (a2 � r

2)
 0.

It follows that

1f

f

� 1r

2

a

2 � r

2 � 2
��rr

2
��2

�
a

2 � r

2
�2  0.

Using
��rr

2
�� = 2r and (2.18), we then have

0 � 1f

f

� C(m)(1 + p
r)

a

2 � r

2 � 8r2
�
a

2 � r

2
�2

� �(2 � 2µ)
hr(B � �), rf i

fB � � + µ
kr(B � �)k2

(B � �)2
� �(B � �)

B � �

� m

2
 � C(m, n)b0 k k4 �

✓
1 � 1

p + 1

◆
b1 kd�k2 � C(m)(1 + p

r)

a

2 � r

2 � 8r2
�
a

2 � r

2
�2 .

However,

�(2 � 2µ)
hr(B � �), rf i

fB � � = �(2 � 2µ)2r
hr(B � �), rri
(a2 � r

2)B � �
� �(2 � 2µ)2r

kr(B � �)k
(a2 � r

2)B � � ,

and we conclude that

µ
kr(B � �)k2

(B � �)2
� �(B � �)

B � � � 4r
kr(B � �)k

(a2 � r

2)B � � �
✓
1 � 1

p + 1

◆
b1 kd�k2 � A � C(m, n)b0 k k4  0. ⇤

Now we are in the position to give the following.
Proof of Theorem 1. We use the key Lemma 3 to prove this theorem. Choose

B(y) =
p
b1 cos(

p
b1⇢(y)),

where ⇢ is the distance function from the fixed point y0 on N . Since �(M) ⇢ B

y0(R), one gets that B � � > 0. From the
Hessian Comparison Theorem [18] and kr⇢k = 1 we have

HessB  �b

3/2
1 cos(

p
b1⇢), (2.21)

krB

k = b1 sin(
p
b1⇢). (2.22)
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It then follows that

kr(B � �)k  k(rB) � �k kd�k = b1 sin(
p
b1⇢ � �) kd�k ,

and

�(B � �)  (HessB) � � kd�k2 + k(rB) � �k k⌧ (�)k
 �b

3/2
1 cos(

p
b1⇢ � �) kd�k2 + b1b2C(m, n) k k2 kd�k

 �b

3/2
1 cos(

p
b1⇢ � �) kd�k2 + 1

(p + 1)(p + 2)
b1B � � kd�k2 + 1

B � � (p + 1)2C(m, n)b1b
2
2 k k4 .

Inserting this into (2.19), we have at x⇤,
b1

p + 2
kd�k2 � 4rb1

(a2 � r

2)B � � kd�k  A + 1
(B � �)2

C(m, n)b k k4 ,

where b := b1b0 = b

3
2 + b

4
2 + b

2
3. In other words,

b1

p + 2
e

2 � 4rb1
(a2 � r

2)B � � e  A + 1
(B � �)2

C(m, n)b k k4 .

Therefore,

b1(B � �)2

p + 2
F

2(x⇤) � 4rb1F(x⇤) 
✓
A + 1

(B � �)2
C(m, n)b k k4

◆ �
a

2 � r

2�2 . (2.23)

For the RHS of the above inequality, we have the following estimate:
�
a

2 � r

2�2
✓
A + 1

(B � �)2
C(m, n)b k k4

◆
 a

2
✓✓

m

2
 + 1

(B � �)2
C(m, n)b k k4

◆
a

2 + C(m)(1 + p
a) + 8

◆

 C(m, n)b1

(B � �)2
a

2

 

1 + p
a +

s
b

b1
k k2

a

!2

.

It is elementary that if Ax2 � Bx � C  0 with A, B, C all positive, then

x  B

A

+
r

C

A

.

From this and (2.23) we conclude that

F(x⇤)  C(m, n)a

b1 cos2(
p
b1R)

 

1 + p
a +

s
b

b1
sup
B

x0 (a)

k k2
a

!

, (2.24)

from which (1.2) follows. This proves Theorem 1. ⇤

3. Liouville theorems for Dirac-harmonic maps

Using the gradient estimate for Dirac-harmonic maps, we can prove the Liouville property for Dirac-harmonic maps,
Theorem 2.
Proof of Theorem 2. Since (�, ) is Dirac harmonic, we can get from the Weitzenböck formula that

� k k �
✓
✏

4
� 1

2
(min {

m, n} � 1) (n � 1)b22 kd�k2
◆

k k .

It is obvious that this theorem is valid ifM is compact. Now,we supposeM is noncompact. Suppose k k  �, then according
to Theorem 1,

kd�k  C(m, n)
p
b�2

b1 cos2(
p
b1R)

.

Thus,

� k k �
✓
✏

4
� C(m, n)b2

b

3
1 cos4(

p
b1R)

�4
◆

k k

for some constant C(m, n) > 0 depending only onm, n.
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If one chooses � such that
✏

4
� C(m, n)b2

b

3
1 cos4(

p
b1R)

�4 = 0,

then k k is a bounded subharmonic function onM .

Now we prove that  ⌘ 0. For every positive number c , let u = (k k + c)�
1
2 , then

1u = �1
2

(k k + c)�
3
2 � k k + 3 (k k + c)

1
2 kru

k2

 �C0

2
(k k + c)�

3
2 k k + 3 (k k + c)

1
2 kru

k2 . (3.3)

Since the Ricci curvature ofM is nonnegative, the Omori–Yaumaximumprinciple holds [17,7], that is, for every ⌘ > 0, there
exists a point p 2 M such that at p,

u < inf u + ⌘, kru

k < ⌘, 1u > �⌘.
It follows from (3.3) and k k  � that

C0

2
k k < ⌘

✓
inf (k k + c)�

1
2 + 4⌘

◆
(k k + c)2 < ⌘

✓
�� 1

2 + 4⌘
◆

(� + c)2.

Let ⌘ ! 0, we obtain

sup k k = 0.

Hence, d� = 0 since (1.2), and� must be constant. ⇤
Proof of Theorem 3. Choose a local orthonormal frame field {

e

i

} such that �⇤
g

N is a diagonal matrix at the considered
point, i.e. h�⇤(ei),�⇤(ej)i = �

i

�
ij

. Let q be the rank of � at the point, we may suppose that �1 � �2 � · · · � �
q

0 > 0 and
q

0  q. By using Newton’s inequality, we have

R

N(�⇤(ei),�⇤(ej),�⇤(ei),�⇤(ej))  2b1
X

1i<jq

0
�2
i

�2
j

 2b1
✓
q

0

2

◆✓
q

0

1

◆�2
 

q

0X

i=1

�2
i

!2

= q

0 � 1
q

0 b1 kd�k4  q � 1
q

b1 kd�k4 .

Applying the Kato–Yau inequality (2.8), i.e., choose ✏ = (� + 1)/(m + �) � 1/m, we have

krd�k2 � �

1 + �
kr kd�k k2 + 1

m + �
k⌧ (�)k2 .

Then according to (2.1), we obtain
1
2
� kd�k2 � div(h⌧ (�),�⇤(ei)iei) � �

1 + �
kr kd�k k2 � m � 1 + �

m + �
k⌧ (�)k2 + a

kd�k2 � q � 1
q

b1 kd�k4 .

On the other hand, we have the following estimate

k⌧ (�)k = 1
2

�����
X

↵ 6=�,i

h ↵, e
i

·  �iRN(✓↵, ✓�)�⇤(ei)

�����

 1
2
b2

X

↵ 6=�
| ↵|

�� �
�� |✓↵|

��✓�
��

qX

i=1

�
i

 1
2
b2 (n � 1) k k2 p

q

kd�k . (3.4)

Hence, if for some � > 0 such that (1.3) holds, then
1
2
� kd�k2 � div(h⌧ (�),�⇤(ei)iei) � �

1 + �
kr kd�k k2 + kd�k2

⇥
✓
a � q � 1

q

b1 kd�k2 � m � 1 + �

4(m + �)
(n � 1)2 qb22 k k4

◆

� �

1 + �
kr kd�k k2 .
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The above inequality implies kd�k is constant, and consequently d� ⌘ 0. So, � is constant and  is a harmonic spinor. It
is obvious that the scalar curvature ofM S

M

� ma. Thus,

� k k2 � 1
2
S

M

k k2 � ma

2
k k2 ,

which implies  ⌘ 0 sinceM is compact. ⇤

Now we give the following.

Proof of Theorem 4. We first show that� must be constant. Firstly, we have the following Kato inequality:

krd�k2 � kr kd�k k2 . (3.5)

For any ✏ > 0, we let u =
p

kd�k2 + ✏, then (2.1) and (3.5) imply that

u1u � div(h⌧ (�),�⇤(ei)iei) = 1
2
� kd�k2 �

�kd�k2 + ✏
��1 kd�k2 kr kd�k k2 � div(h⌧ (�),�⇤(ei)iei)

� ✏
�kd�k2 + ✏

��1 kr kd�k k2 � k⌧ (�)k2 + h�⇤(RicM(e
i

)),�⇤(ei)i
� R

N(�⇤(ei),�⇤(ej),�⇤(ei),�⇤(ej))

� �k⌧ (�)k2 + h�⇤(RicM(e
i

)),�⇤(ei)i � R

N(�⇤(ei),�⇤(ej),�⇤(ei),�⇤(ej)). (3.6)

Secondly, for any smooth function with compact support ⌘, we have

div(⌘2uru) = ⌘2u1u + 2⌘uhr⌘, rui + ⌘2 kru

k2 .

By integrating onM , we have
Z

M

⌘2u1u � ⌘2div(h⌧ (�),�⇤(ei)iei) = �2
Z

M

⌘uhr⌘, rui �
Z

M

⌘2 kru

k2 + 2
Z

M

⌘h⌧ (�),�⇤(r⌘)i. (3.7)

Fix x0 2 M , and choose ⌘ such that

⌘(x) =
⇢
1, x 2 B

R

(x0);
0, x 62 B2R(x0),

and 0  ⌘  1, kr⌘k  C/R, where C is a positive constant. We have the following estimate

� 2
Z

M

⌘uhr⌘, rui �
Z

M

⌘2 kru

k2  2
✓Z

B2R(x0)\BR(x0)
⌘2 kru

k2
◆ 1

2
✓Z

B2R(x0)\BR(x0)
u

2 kr⌘k2
◆ 1

2

�
Z

B2R(x0)\BR(x0)
⌘2 kru

k2 �
Z

B

R

(x0)
⌘2 kru

k2 , (3.8)

and for any � 2 (0, 1),

2
Z

M

⌘h⌧ (�),�⇤(r⌘)i  1
�

Z

B2R(x0)
⌘2 k⌧ (�)k2 + �

Z

B2R(x0)\BR(x0)
u

2 kr⌘k2 . (3.9)

From (3.6)–(3.9), we have

2
✓Z

B2R(x0)\BR(x0)
⌘2 kru

k2
◆ 1

2
✓Z

B2R(x0)\BR(x0)
u

2 kr⌘k2
◆ 1

2
� (1 � �)

Z

B2R(x0)\BR(x0)
⌘2 kru

k2 �
Z

B

R

(x0)
⌘2 kru

k2

� �
✓
1 + 1

�

◆Z

B2R(x0)
⌘2 k⌧ (�)k2 +

Z

B2R(x0)
⌘2h�⇤(RicM(e

i

)),�⇤(ei)i

�
Z

B2R(x0)
⌘2RN(�⇤(ei),�⇤(ej),�⇤(ei),�⇤(ej)). (3.10)

Independently, for � > 0 in (1.5), we have

�
✓
1 + 1

�

◆
k⌧ (�)k2 + h�⇤(RicM(e

i

)),�⇤(ei)i � R

N(�⇤(ei),�⇤(ej),�⇤(ei),�⇤(ej))

� kd�k2
✓
a � q � 1

q

b1 kd�k2 � 1 + �

4�
(n � 1)2 qb22 k k4

◆
� 0.
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Thus,

2
✓Z

B2R(x0)\BR(x0)
⌘2 kru

k2
◆ 1

2
✓Z

B2R(x0)\BR(x0)
u

2 kr⌘k2
◆ 1

2
� (1 � �)

Z

B2R(x0)\BR(x0)
⌘2 kru

k2 �
Z

B

R

(x0)
⌘2 kru

k2 � 0.

This inequality implies

(1 � �)

Z

B

R

(x0)
kru

k2 
Z

B2R(x0)\BR(x0)
u

2 kr⌘k2  C

2

R

2

Z

B

R

(x0)
u

2. (3.11)

Let ✏ go to 0,

(1 � �)

Z

B

R

(x0)
kr kd�k k  C

2

R

2

Z

B

R

(x0)
kd�k2 .

Since
R
M

kd�k2 < 1, consequently, letting R go to infinity, we get that
Z

M

kr kd�k k  0.

Thus, kd�k must be constant. Since
R
M

kd�k2 < 1, and any complete noncompact manifold with nonnegative Ricci
curvature has infinite volume [19],� must be constant.

Next, we show that  ⌘ 0. Since� is constant, according to the Weitzenböck formula in [2],

1
2
� k k2 = kr k2 + 1

4
S

M

k k2 � 0.

Then k k must be constant since there is no nonconstant nonnegative L

2 subharmonic function on any complete manifold
M [19]. Thus  ⌘ 0 since

R
M

k k4 < 1 and M has infinite volume. ⇤
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